约束优化问题的一种新的遗传算法及其收敛性

Dalian Liu, Chunfeng Xing, Xuehai Shang
{"title":"约束优化问题的一种新的遗传算法及其收敛性","authors":"Dalian Liu, Chunfeng Xing, Xuehai Shang","doi":"10.1109/CIS.2010.39","DOIUrl":null,"url":null,"abstract":"Constrained optimization problems are one of the most important mathematical programming problems frequently encountered in the disciplines of science and engineering applications. In this paper, a new approach is presented to handle constrained optimization problems. The new technique treats constrained optimization as a two-objective optimization and a new genetic algorithm with specifically designed genetic operators is proposed. The crossover operator adopts the idea of PSO but improves its search ability. To keep the diversity and generate the individuals near the boundary of the feasible region, the crossover is made between the individual taken part in the crossover and its farthest particle. As a necessary complement to crossover operator, the mutation operator is designed by using the shrinking chaotic technique and has strong local search ability. The selection operator is designed to prefer to the feasible solutions. Furthermore, the convergence of the algorithm is analyzed. At last, the computer simulation demonstrates the effectiveness of the proposed algorithm.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Genetic Algorithm and Its Convergence for Constrained Optimization Problems\",\"authors\":\"Dalian Liu, Chunfeng Xing, Xuehai Shang\",\"doi\":\"10.1109/CIS.2010.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained optimization problems are one of the most important mathematical programming problems frequently encountered in the disciplines of science and engineering applications. In this paper, a new approach is presented to handle constrained optimization problems. The new technique treats constrained optimization as a two-objective optimization and a new genetic algorithm with specifically designed genetic operators is proposed. The crossover operator adopts the idea of PSO but improves its search ability. To keep the diversity and generate the individuals near the boundary of the feasible region, the crossover is made between the individual taken part in the crossover and its farthest particle. As a necessary complement to crossover operator, the mutation operator is designed by using the shrinking chaotic technique and has strong local search ability. The selection operator is designed to prefer to the feasible solutions. Furthermore, the convergence of the algorithm is analyzed. At last, the computer simulation demonstrates the effectiveness of the proposed algorithm.\",\"PeriodicalId\":420515,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Security\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2010.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

约束优化问题是科学和工程应用中经常遇到的最重要的数学规划问题之一。本文提出了一种处理约束优化问题的新方法。该方法将约束优化视为双目标优化,提出了一种新的遗传算法,并设计了特定的遗传算子。交叉算子采用粒子群算法的思想,提高了其搜索能力。为了保持多样性并在可行区域边界附近生成个体,在参与交叉的个体与其最远的粒子之间进行交叉。突变算子是对交叉算子的必要补充,采用混沌收缩技术设计,具有较强的局部搜索能力。选择算子被设计成优先于可行解。进一步分析了算法的收敛性。最后,通过计算机仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Genetic Algorithm and Its Convergence for Constrained Optimization Problems
Constrained optimization problems are one of the most important mathematical programming problems frequently encountered in the disciplines of science and engineering applications. In this paper, a new approach is presented to handle constrained optimization problems. The new technique treats constrained optimization as a two-objective optimization and a new genetic algorithm with specifically designed genetic operators is proposed. The crossover operator adopts the idea of PSO but improves its search ability. To keep the diversity and generate the individuals near the boundary of the feasible region, the crossover is made between the individual taken part in the crossover and its farthest particle. As a necessary complement to crossover operator, the mutation operator is designed by using the shrinking chaotic technique and has strong local search ability. The selection operator is designed to prefer to the feasible solutions. Furthermore, the convergence of the algorithm is analyzed. At last, the computer simulation demonstrates the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信