{"title":"远距离人眼安全激光TOF相机设计","authors":"A. Kovalev, V. M. Polyakov, V. Buchenkov","doi":"10.1117/12.2227764","DOIUrl":null,"url":null,"abstract":"We present a new TOF camera design based on a compact actively Q-switched diode pumped solid-state laser operating in 1.5 μm range and a receiver system based on a short wave infrared InGaAs PIN diodes focal plane array with an image intensifier and a special readout integration circuit. The compact camera is capable of depth imaging up to 4 kilometers with 10 frame/s and 1.2 m error. The camera could be applied for airborne and space geodesy location and navigation.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Long-distance eye-safe laser TOF camera design\",\"authors\":\"A. Kovalev, V. M. Polyakov, V. Buchenkov\",\"doi\":\"10.1117/12.2227764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new TOF camera design based on a compact actively Q-switched diode pumped solid-state laser operating in 1.5 μm range and a receiver system based on a short wave infrared InGaAs PIN diodes focal plane array with an image intensifier and a special readout integration circuit. The compact camera is capable of depth imaging up to 4 kilometers with 10 frame/s and 1.2 m error. The camera could be applied for airborne and space geodesy location and navigation.\",\"PeriodicalId\":285152,\"journal\":{\"name\":\"SPIE Photonics Europe\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Photonics Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2227764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2227764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a new TOF camera design based on a compact actively Q-switched diode pumped solid-state laser operating in 1.5 μm range and a receiver system based on a short wave infrared InGaAs PIN diodes focal plane array with an image intensifier and a special readout integration circuit. The compact camera is capable of depth imaging up to 4 kilometers with 10 frame/s and 1.2 m error. The camera could be applied for airborne and space geodesy location and navigation.