SLBNet:姿态估计的浅轻量级双边网络

Mao-qing Zhou, W. Sun, F. Yang, Sheng Zhang
{"title":"SLBNet:姿态估计的浅轻量级双边网络","authors":"Mao-qing Zhou, W. Sun, F. Yang, Sheng Zhang","doi":"10.1109/CISP-BMEI53629.2021.9624376","DOIUrl":null,"url":null,"abstract":"Human pose estimation from images is an important task in many real-life applications. However, most existing methods focus on improving the effectiveness without considering efficiency, making the networks computationally expensive with a huge size. As depthwise separable convolution can help compress the model size and floating point operations (FLOPs), some methods combined it to make human pose estimation affordable on resource-constrained devices. However, depthwise separable convolution also slows down the inference speed, especially on GPU devices. In this paper, we introduce a shallow and lightweight bilateral network (SLBNet). Our network inferences much faster than the existing methods while achieves competitive performance. We evaluate our networks on the MPII and COCO datasets. Specially, our SLBNet yields 67.8 Average Precision (AP) on COCO test set with only 3.6M parameters and 4.5G FLOPs at 253 FPS on a single 2080Ti GPU, and 25 FPS on an Intel i7-8700K CPU machine.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"424 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLBNet: Shallow and Lightweight Bilateral Network for Pose Estimation\",\"authors\":\"Mao-qing Zhou, W. Sun, F. Yang, Sheng Zhang\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human pose estimation from images is an important task in many real-life applications. However, most existing methods focus on improving the effectiveness without considering efficiency, making the networks computationally expensive with a huge size. As depthwise separable convolution can help compress the model size and floating point operations (FLOPs), some methods combined it to make human pose estimation affordable on resource-constrained devices. However, depthwise separable convolution also slows down the inference speed, especially on GPU devices. In this paper, we introduce a shallow and lightweight bilateral network (SLBNet). Our network inferences much faster than the existing methods while achieves competitive performance. We evaluate our networks on the MPII and COCO datasets. Specially, our SLBNet yields 67.8 Average Precision (AP) on COCO test set with only 3.6M parameters and 4.5G FLOPs at 253 FPS on a single 2080Ti GPU, and 25 FPS on an Intel i7-8700K CPU machine.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"424 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从图像中估计人体姿态在许多实际应用中是一项重要的任务。然而,现有的大多数方法只注重提高有效性而不考虑效率,使得网络规模庞大,计算成本高。由于深度可分离卷积可以帮助压缩模型大小和浮点运算(FLOPs),一些方法将其结合起来,使得在资源受限的设备上可以负担得起人体姿态估计。然而,深度可分离卷积也降低了推理速度,特别是在GPU设备上。本文介绍了一种浅轻量级双边网络(SLBNet)。我们的网络推理速度比现有的方法快得多,同时达到了具有竞争力的性能。我们在MPII和COCO数据集上评估了我们的网络。特别是,我们的SLBNet在COCO测试集上的平均精度(AP)为67.8,只有3.6万个参数和4.5G FLOPs,在单个2080Ti GPU上为253 FPS,在Intel i7-8700K CPU机器上为25 FPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLBNet: Shallow and Lightweight Bilateral Network for Pose Estimation
Human pose estimation from images is an important task in many real-life applications. However, most existing methods focus on improving the effectiveness without considering efficiency, making the networks computationally expensive with a huge size. As depthwise separable convolution can help compress the model size and floating point operations (FLOPs), some methods combined it to make human pose estimation affordable on resource-constrained devices. However, depthwise separable convolution also slows down the inference speed, especially on GPU devices. In this paper, we introduce a shallow and lightweight bilateral network (SLBNet). Our network inferences much faster than the existing methods while achieves competitive performance. We evaluate our networks on the MPII and COCO datasets. Specially, our SLBNet yields 67.8 Average Precision (AP) on COCO test set with only 3.6M parameters and 4.5G FLOPs at 253 FPS on a single 2080Ti GPU, and 25 FPS on an Intel i7-8700K CPU machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信