{"title":"二值图像带限离散傅里叶变换的反演:唯一性和算法","authors":"Howard W. Levinson, Vadim A. Markel","doi":"10.1137/22M1540442","DOIUrl":null,"url":null,"abstract":"Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The {\\it a priori} information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes $N_1 \\times N_2$, $N_1 \\times N_1$, and $N_1^\\alpha\\times N_1^\\alpha$, where $N_1 \\neq N_2$ are prime numbers and $\\alpha>1$ an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \\times 29$ binary matrices with only $11\\times 11 = 121$ DFT coefficients.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inversion of band-limited discrete Fourier transforms of binary images: Uniqueness and algorithms\",\"authors\":\"Howard W. Levinson, Vadim A. Markel\",\"doi\":\"10.1137/22M1540442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The {\\\\it a priori} information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes $N_1 \\\\times N_2$, $N_1 \\\\times N_1$, and $N_1^\\\\alpha\\\\times N_1^\\\\alpha$, where $N_1 \\\\neq N_2$ are prime numbers and $\\\\alpha>1$ an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \\\\times 29$ binary matrices with only $11\\\\times 11 = 121$ DFT coefficients.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22M1540442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22M1540442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inversion of band-limited discrete Fourier transforms of binary images: Uniqueness and algorithms
Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The {\it a priori} information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes $N_1 \times N_2$, $N_1 \times N_1$, and $N_1^\alpha\times N_1^\alpha$, where $N_1 \neq N_2$ are prime numbers and $\alpha>1$ an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred $29 \times 29$ binary matrices with only $11\times 11 = 121$ DFT coefficients.