利用Hadamard积分解提高bfv加密水印的效率

A. Basuki, Iwan Setiawan, D. Rosiyadi
{"title":"利用Hadamard积分解提高bfv加密水印的效率","authors":"A. Basuki, Iwan Setiawan, D. Rosiyadi","doi":"10.1109/NISS55057.2022.10085020","DOIUrl":null,"url":null,"abstract":"Fully homomorphic encryption (FHE) enables arithmetic computation over encrypted data to preserve data privacy in the untrusted computing domain. Nevertheless, the BFV-based FHE computation is memory expensive that does not scale for high-resolution image computation such as image watermarking. This paper proposed a vector decomposition approach based on the Hadamard product to enable memory-efficient encrypted watermarking on huge-size images. The method uses singular value decomposition (SVD)-based watermarking by splitting the watermark embedding into row-wise of Hadamard products. The evaluation shows that the proposed method reduces the memory requirements to N times, where N refers to the image dimension in pixels. In addition, the proposed method allows parallel computation for faster computation, from 4-times up to 24-times faster, by utilizing the available memory.","PeriodicalId":138637,"journal":{"name":"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Efficiency on BFV-based Encrypted Watermarking using Hadamard Product Decomposition\",\"authors\":\"A. Basuki, Iwan Setiawan, D. Rosiyadi\",\"doi\":\"10.1109/NISS55057.2022.10085020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully homomorphic encryption (FHE) enables arithmetic computation over encrypted data to preserve data privacy in the untrusted computing domain. Nevertheless, the BFV-based FHE computation is memory expensive that does not scale for high-resolution image computation such as image watermarking. This paper proposed a vector decomposition approach based on the Hadamard product to enable memory-efficient encrypted watermarking on huge-size images. The method uses singular value decomposition (SVD)-based watermarking by splitting the watermark embedding into row-wise of Hadamard products. The evaluation shows that the proposed method reduces the memory requirements to N times, where N refers to the image dimension in pixels. In addition, the proposed method allows parallel computation for faster computation, from 4-times up to 24-times faster, by utilizing the available memory.\",\"PeriodicalId\":138637,\"journal\":{\"name\":\"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NISS55057.2022.10085020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Networking, Information Systems and Security: Envisage Intelligent Systems in 5g//6G-based Interconnected Digital Worlds (NISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NISS55057.2022.10085020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

完全同态加密(Fully homomorphic encryption, FHE)是一种对加密数据进行算术计算的技术,可以在不可信计算域中保护数据的隐私。然而,基于bfv的FHE计算是内存昂贵的,不适合高分辨率图像计算,如图像水印。本文提出了一种基于Hadamard积的矢量分解方法,实现了对大尺寸图像的高效内存加密水印。该方法采用基于奇异值分解(SVD)的水印方法,将嵌入的水印按行拆分为Hadamard积。评估表明,所提出的方法将内存需求降低到N倍,其中N指的是图像的像素尺寸。此外,所提出的方法允许并行计算更快的计算,从4倍到24倍,通过利用可用的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Efficiency on BFV-based Encrypted Watermarking using Hadamard Product Decomposition
Fully homomorphic encryption (FHE) enables arithmetic computation over encrypted data to preserve data privacy in the untrusted computing domain. Nevertheless, the BFV-based FHE computation is memory expensive that does not scale for high-resolution image computation such as image watermarking. This paper proposed a vector decomposition approach based on the Hadamard product to enable memory-efficient encrypted watermarking on huge-size images. The method uses singular value decomposition (SVD)-based watermarking by splitting the watermark embedding into row-wise of Hadamard products. The evaluation shows that the proposed method reduces the memory requirements to N times, where N refers to the image dimension in pixels. In addition, the proposed method allows parallel computation for faster computation, from 4-times up to 24-times faster, by utilizing the available memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信