{"title":"从电子病历中加速结果驱动的风险因素识别的稳健框架","authors":"Prithwish Chakraborty, Faisal Farooq","doi":"10.1145/3292500.3330718","DOIUrl":null,"url":null,"abstract":"Electronic Health Records (EHR) containing longitudinal information about millions of patient lives are increasingly being utilized by organizations across the healthcare spectrum. Studies on EHR data have enabled real world applications like understanding of disease progression, outcomes analysis, and comparative effectiveness research. However, often every study is independently commissioned, data is gathered by surveys or specifically purchased per study by a long and often painful process. This is followed by an arduous repetitive cycle of analysis, model building, and generation of insights. This process can take anywhere between 1 - 3 years. In this paper, we present a robust end-to-end machine learning based SaaS system to perform analysis on a very large EHR dataset. The framework consists of a proprietary EHR datamart spanning ~55 million patient lives in USA and over ~20 billion data points. To the best of our knowledge, this framework is the largest in the industry to analyze medical records at this scale, with such efficacy and ease. We developed an end-to-end ML framework with carefully chosen components to support EHR analysis at scale and suitable for further downstream clinical analysis. Specifically, it consists of a ridge regularized Survival Support Vector Machine (SSVM) with a clinical kernel, coupled with Chi-square distance-based feature selection, to uncover relevant risk factors by exploiting the weak correlations in EHR. Our results on multiple real use cases indicate that the framework identifies relevant factors effectively without expert supervision. The framework is stable, generalizable over outcomes, and also found to contribute to better out-of-bound prediction over known expert features. Importantly, the ML methodologies used are interpretable which is critical for acceptance of our system in the targeted user base. With the system being operational, all of these studies were completed within a time frame of 3-4 weeks compared to the industry standard 12-36 months. As such our system can accelerate analysis and discovery, result in better ROI due to reduced investments as well as quicker turn around of studies.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Robust Framework for Accelerated Outcome-driven Risk Factor Identification from EHR\",\"authors\":\"Prithwish Chakraborty, Faisal Farooq\",\"doi\":\"10.1145/3292500.3330718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic Health Records (EHR) containing longitudinal information about millions of patient lives are increasingly being utilized by organizations across the healthcare spectrum. Studies on EHR data have enabled real world applications like understanding of disease progression, outcomes analysis, and comparative effectiveness research. However, often every study is independently commissioned, data is gathered by surveys or specifically purchased per study by a long and often painful process. This is followed by an arduous repetitive cycle of analysis, model building, and generation of insights. This process can take anywhere between 1 - 3 years. In this paper, we present a robust end-to-end machine learning based SaaS system to perform analysis on a very large EHR dataset. The framework consists of a proprietary EHR datamart spanning ~55 million patient lives in USA and over ~20 billion data points. To the best of our knowledge, this framework is the largest in the industry to analyze medical records at this scale, with such efficacy and ease. We developed an end-to-end ML framework with carefully chosen components to support EHR analysis at scale and suitable for further downstream clinical analysis. Specifically, it consists of a ridge regularized Survival Support Vector Machine (SSVM) with a clinical kernel, coupled with Chi-square distance-based feature selection, to uncover relevant risk factors by exploiting the weak correlations in EHR. Our results on multiple real use cases indicate that the framework identifies relevant factors effectively without expert supervision. The framework is stable, generalizable over outcomes, and also found to contribute to better out-of-bound prediction over known expert features. Importantly, the ML methodologies used are interpretable which is critical for acceptance of our system in the targeted user base. With the system being operational, all of these studies were completed within a time frame of 3-4 weeks compared to the industry standard 12-36 months. As such our system can accelerate analysis and discovery, result in better ROI due to reduced investments as well as quicker turn around of studies.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Framework for Accelerated Outcome-driven Risk Factor Identification from EHR
Electronic Health Records (EHR) containing longitudinal information about millions of patient lives are increasingly being utilized by organizations across the healthcare spectrum. Studies on EHR data have enabled real world applications like understanding of disease progression, outcomes analysis, and comparative effectiveness research. However, often every study is independently commissioned, data is gathered by surveys or specifically purchased per study by a long and often painful process. This is followed by an arduous repetitive cycle of analysis, model building, and generation of insights. This process can take anywhere between 1 - 3 years. In this paper, we present a robust end-to-end machine learning based SaaS system to perform analysis on a very large EHR dataset. The framework consists of a proprietary EHR datamart spanning ~55 million patient lives in USA and over ~20 billion data points. To the best of our knowledge, this framework is the largest in the industry to analyze medical records at this scale, with such efficacy and ease. We developed an end-to-end ML framework with carefully chosen components to support EHR analysis at scale and suitable for further downstream clinical analysis. Specifically, it consists of a ridge regularized Survival Support Vector Machine (SSVM) with a clinical kernel, coupled with Chi-square distance-based feature selection, to uncover relevant risk factors by exploiting the weak correlations in EHR. Our results on multiple real use cases indicate that the framework identifies relevant factors effectively without expert supervision. The framework is stable, generalizable over outcomes, and also found to contribute to better out-of-bound prediction over known expert features. Importantly, the ML methodologies used are interpretable which is critical for acceptance of our system in the targeted user base. With the system being operational, all of these studies were completed within a time frame of 3-4 weeks compared to the industry standard 12-36 months. As such our system can accelerate analysis and discovery, result in better ROI due to reduced investments as well as quicker turn around of studies.