基于生成对抗网络的训练样本增强CNN高光谱图像分类

V. Neagoe, Paul Diaconescu
{"title":"基于生成对抗网络的训练样本增强CNN高光谱图像分类","authors":"V. Neagoe, Paul Diaconescu","doi":"10.1109/COMM48946.2020.9142021","DOIUrl":null,"url":null,"abstract":"A big challenge for hyperspectral image recognition is to perform pixel classification when only a few hyperspectral training labeled pixels are available. In this research we have built Generative Adversarial Networks (GANs) that generate additional virtual training hyperspectral pixels based on features extracted from the originally labeled pixels belonging to training dataset. The experiments show a better performance of pixel classification for a classifier based on Deep Convolutional Neural Networks (DCNNs) using GANs for training sample augmentation versus the performance of the DCNN classifier without GAN augmentation. The score of 95.32% correct classification using DCNN classifier with GANs versus the score of 92.94% of DCNN classifier without GANs proves the obvious advantage of the presented approach.","PeriodicalId":405841,"journal":{"name":"2020 13th International Conference on Communications (COMM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"CNN Hyperspectral Image Classification Using Training Sample Augmentation with Generative Adversarial Networks\",\"authors\":\"V. Neagoe, Paul Diaconescu\",\"doi\":\"10.1109/COMM48946.2020.9142021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A big challenge for hyperspectral image recognition is to perform pixel classification when only a few hyperspectral training labeled pixels are available. In this research we have built Generative Adversarial Networks (GANs) that generate additional virtual training hyperspectral pixels based on features extracted from the originally labeled pixels belonging to training dataset. The experiments show a better performance of pixel classification for a classifier based on Deep Convolutional Neural Networks (DCNNs) using GANs for training sample augmentation versus the performance of the DCNN classifier without GAN augmentation. The score of 95.32% correct classification using DCNN classifier with GANs versus the score of 92.94% of DCNN classifier without GANs proves the obvious advantage of the presented approach.\",\"PeriodicalId\":405841,\"journal\":{\"name\":\"2020 13th International Conference on Communications (COMM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 13th International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMM48946.2020.9142021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMM48946.2020.9142021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高光谱图像识别面临的一大挑战是如何在只有少量高光谱训练标记像素可用的情况下进行像素分类。在这项研究中,我们建立了生成式对抗网络(GANs),该网络基于从属于训练数据集的原始标记像素中提取的特征生成额外的虚拟训练高光谱像素。实验表明,使用GAN进行训练样本增强的基于深度卷积神经网络(DCNNs)的分类器的像素分类性能优于不使用GAN增强的DCNN分类器。带gan的DCNN分类器的分类正确率为95.32%,而不带gan的DCNN分类器的分类正确率为92.94%,证明了本文方法的明显优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN Hyperspectral Image Classification Using Training Sample Augmentation with Generative Adversarial Networks
A big challenge for hyperspectral image recognition is to perform pixel classification when only a few hyperspectral training labeled pixels are available. In this research we have built Generative Adversarial Networks (GANs) that generate additional virtual training hyperspectral pixels based on features extracted from the originally labeled pixels belonging to training dataset. The experiments show a better performance of pixel classification for a classifier based on Deep Convolutional Neural Networks (DCNNs) using GANs for training sample augmentation versus the performance of the DCNN classifier without GAN augmentation. The score of 95.32% correct classification using DCNN classifier with GANs versus the score of 92.94% of DCNN classifier without GANs proves the obvious advantage of the presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信