实数遗传算法的最大似然DOA估计

Wei Yan, Zhaoda Zhu
{"title":"实数遗传算法的最大似然DOA估计","authors":"Wei Yan, Zhaoda Zhu","doi":"10.1109/NAECON.2000.894972","DOIUrl":null,"url":null,"abstract":"The problem of obtaining accurate direction of arrival (DOA) estimation of narrow-band sources lying in the far field of the array is one of the central problems in radar, sonar and seismology. In this paper a real-valued genetic algorithm is used to obtain the global optimal solution of the maximum likelihood (ML) DOA estimation. It overcomes the local optima problem existing in some ML DOA estimation algorithms, and improves the estimation accuracy. The proposed real-valued genetic algorithm is composed of real-valued crossover and mutation operators constructed with the information of real number field and objective function. It is an ideal method for searching for the global solution of non-linear real variable functions. Simulation results of noncoherent and coherent sources DOA estimation show that the proposed algorithm is better in accuracy over some conventional DOA estimation algorithms.","PeriodicalId":171131,"journal":{"name":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Maximum likelihood DOA estimation by real-valued genetic algorithm\",\"authors\":\"Wei Yan, Zhaoda Zhu\",\"doi\":\"10.1109/NAECON.2000.894972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of obtaining accurate direction of arrival (DOA) estimation of narrow-band sources lying in the far field of the array is one of the central problems in radar, sonar and seismology. In this paper a real-valued genetic algorithm is used to obtain the global optimal solution of the maximum likelihood (ML) DOA estimation. It overcomes the local optima problem existing in some ML DOA estimation algorithms, and improves the estimation accuracy. The proposed real-valued genetic algorithm is composed of real-valued crossover and mutation operators constructed with the information of real number field and objective function. It is an ideal method for searching for the global solution of non-linear real variable functions. Simulation results of noncoherent and coherent sources DOA estimation show that the proposed algorithm is better in accuracy over some conventional DOA estimation algorithms.\",\"PeriodicalId\":171131,\"journal\":{\"name\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"volume\":\"317 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2000.894972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2000.894972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

阵列远场窄带源的准确到达方向估计问题是雷达、声纳和地震学研究的核心问题之一。本文采用实值遗传算法求解最大似然DOA估计的全局最优解。该方法克服了一些机器学习DOA估计算法存在的局部最优问题,提高了估计精度。该算法由实数域信息和目标函数信息构成的实值交叉算子和变异算子组成。它是求解非线性实变函数全局解的理想方法。非相干和相干源的DOA估计仿真结果表明,该算法比传统的DOA估计算法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood DOA estimation by real-valued genetic algorithm
The problem of obtaining accurate direction of arrival (DOA) estimation of narrow-band sources lying in the far field of the array is one of the central problems in radar, sonar and seismology. In this paper a real-valued genetic algorithm is used to obtain the global optimal solution of the maximum likelihood (ML) DOA estimation. It overcomes the local optima problem existing in some ML DOA estimation algorithms, and improves the estimation accuracy. The proposed real-valued genetic algorithm is composed of real-valued crossover and mutation operators constructed with the information of real number field and objective function. It is an ideal method for searching for the global solution of non-linear real variable functions. Simulation results of noncoherent and coherent sources DOA estimation show that the proposed algorithm is better in accuracy over some conventional DOA estimation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信