红雀:在交换机内限制订单

Xinpeng Hong, Changgang Zheng, S. Zohren, Noa Zilberman
{"title":"红雀:在交换机内限制订单","authors":"Xinpeng Hong, Changgang Zheng, S. Zohren, Noa Zilberman","doi":"10.1145/3546037.3546057","DOIUrl":null,"url":null,"abstract":"Financial trading often relies nowadays on machine learning. However, many trading applications require very short response times, which cannot always be supported by traditional machine learning frameworks. We present Linnet, providing financial market prediction within programmable switches. Linnet builds limit order books from high-frequency market data feeds within the switch, and uses them for machine-learning based market prediction. Linnet demonstrates the potential to predict future stock price movements with high accuracy and low latency, increasing financial gains.","PeriodicalId":351682,"journal":{"name":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Linnet: limit order books within switches\",\"authors\":\"Xinpeng Hong, Changgang Zheng, S. Zohren, Noa Zilberman\",\"doi\":\"10.1145/3546037.3546057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial trading often relies nowadays on machine learning. However, many trading applications require very short response times, which cannot always be supported by traditional machine learning frameworks. We present Linnet, providing financial market prediction within programmable switches. Linnet builds limit order books from high-frequency market data feeds within the switch, and uses them for machine-learning based market prediction. Linnet demonstrates the potential to predict future stock price movements with high accuracy and low latency, increasing financial gains.\",\"PeriodicalId\":351682,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '22 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546037.3546057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '22 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546037.3546057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

如今,金融交易往往依赖于机器学习。然而,许多交易应用程序需要非常短的响应时间,传统的机器学习框架并不总是支持这一点。我们提出了Linnet,在可编程交换机中提供金融市场预测。Linnet根据交换机内的高频市场数据建立限价订单,并将其用于基于机器学习的市场预测。Linnet展示了以高精度和低延迟预测未来股票价格走势的潜力,从而增加了财务收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linnet: limit order books within switches
Financial trading often relies nowadays on machine learning. However, many trading applications require very short response times, which cannot always be supported by traditional machine learning frameworks. We present Linnet, providing financial market prediction within programmable switches. Linnet builds limit order books from high-frequency market data feeds within the switch, and uses them for machine-learning based market prediction. Linnet demonstrates the potential to predict future stock price movements with high accuracy and low latency, increasing financial gains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信