{"title":"部分和完全未校准阵列传感器网络的联合定位与校准","authors":"Jannik Springer, M. Oispuu, W. Koch","doi":"10.1109/MFI55806.2022.9913866","DOIUrl":null,"url":null,"abstract":"The performance of high-resolution direction finding methods can significantly degrade if mismatches between the actual array response and the modeled array response are not compensated. Using sources of opportunity, self-calibration techniques jointly estimate any unknown perturbations and source parameters. In this work, we propose a self-calibration method for sensor networks that fully exploits the source position by combining the well-known bearings-only localization method and existing eigenstructure based self-calibration techniques. Using numerical experiments we demonstrate that the proposed method can uniquely estimate the gain and phase perturbations of multiple sensors as well as the positions of a moving source. We outline the Cramer-Rao lower bound and´ show that the method is efficient. Finally, the self-calibration method is applied to measurement data collected in field trials.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Localization and Calibration in Partly and Fully Uncalibrated Array Sensor Networks\",\"authors\":\"Jannik Springer, M. Oispuu, W. Koch\",\"doi\":\"10.1109/MFI55806.2022.9913866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of high-resolution direction finding methods can significantly degrade if mismatches between the actual array response and the modeled array response are not compensated. Using sources of opportunity, self-calibration techniques jointly estimate any unknown perturbations and source parameters. In this work, we propose a self-calibration method for sensor networks that fully exploits the source position by combining the well-known bearings-only localization method and existing eigenstructure based self-calibration techniques. Using numerical experiments we demonstrate that the proposed method can uniquely estimate the gain and phase perturbations of multiple sensors as well as the positions of a moving source. We outline the Cramer-Rao lower bound and´ show that the method is efficient. Finally, the self-calibration method is applied to measurement data collected in field trials.\",\"PeriodicalId\":344737,\"journal\":{\"name\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI55806.2022.9913866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Localization and Calibration in Partly and Fully Uncalibrated Array Sensor Networks
The performance of high-resolution direction finding methods can significantly degrade if mismatches between the actual array response and the modeled array response are not compensated. Using sources of opportunity, self-calibration techniques jointly estimate any unknown perturbations and source parameters. In this work, we propose a self-calibration method for sensor networks that fully exploits the source position by combining the well-known bearings-only localization method and existing eigenstructure based self-calibration techniques. Using numerical experiments we demonstrate that the proposed method can uniquely estimate the gain and phase perturbations of multiple sensors as well as the positions of a moving source. We outline the Cramer-Rao lower bound and´ show that the method is efficient. Finally, the self-calibration method is applied to measurement data collected in field trials.