基于梯度信息和邻段协同优化的大视差范围立体匹配

Zhengang Zhai, Yao Lu, Hong Zhao
{"title":"基于梯度信息和邻段协同优化的大视差范围立体匹配","authors":"Zhengang Zhai, Yao Lu, Hong Zhao","doi":"10.1109/ICCEE.2008.40","DOIUrl":null,"url":null,"abstract":"In this paper, a novel stereo matching algorithm for larger disparity range is proposed that a new local energy function and a new global energy function are presented, which use the gradient information and adjacent segment geometric constraint respectively. First get the reliable pixel disparity, then, infer the disparity of un-reliable pixel from the reliable pixel disparity using the neighbor segments cooperative optimization method. In this paper, penalty terms are used to handle the occlusion, the disparity discontinuity and less-texture with segmentation information. We use image pairs to test, which are still more challenging than the standard stereo benchmarks such as the Middlebury Teddy and Cones images, due to their larger disparity range and higher percentage of un-textured surfaces. Experimental results demonstrate the outstanding performance of the proposed method in accuracy.","PeriodicalId":365473,"journal":{"name":"2008 International Conference on Computer and Electrical Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stereo Matching for Larger Disparity Range Using Gradient Information and Adjacent Segments Cooperative Optimization\",\"authors\":\"Zhengang Zhai, Yao Lu, Hong Zhao\",\"doi\":\"10.1109/ICCEE.2008.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel stereo matching algorithm for larger disparity range is proposed that a new local energy function and a new global energy function are presented, which use the gradient information and adjacent segment geometric constraint respectively. First get the reliable pixel disparity, then, infer the disparity of un-reliable pixel from the reliable pixel disparity using the neighbor segments cooperative optimization method. In this paper, penalty terms are used to handle the occlusion, the disparity discontinuity and less-texture with segmentation information. We use image pairs to test, which are still more challenging than the standard stereo benchmarks such as the Middlebury Teddy and Cones images, due to their larger disparity range and higher percentage of un-textured surfaces. Experimental results demonstrate the outstanding performance of the proposed method in accuracy.\",\"PeriodicalId\":365473,\"journal\":{\"name\":\"2008 International Conference on Computer and Electrical Engineering\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2008.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2008.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的大视差范围立体匹配算法,该算法分别利用梯度信息和相邻段几何约束,提出了新的局部能量函数和新的全局能量函数。首先得到可靠像素视差,然后利用邻段协同优化方法从可靠像素视差中推断出不可靠像素的视差。本文使用惩罚项来处理遮挡、视差不连续和纹理较少的分割信息。我们使用图像对进行测试,这仍然比标准的立体基准(如Middlebury Teddy和cone图像)更具挑战性,因为它们的视差范围更大,未纹理表面的百分比更高。实验结果表明,该方法在精度上具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereo Matching for Larger Disparity Range Using Gradient Information and Adjacent Segments Cooperative Optimization
In this paper, a novel stereo matching algorithm for larger disparity range is proposed that a new local energy function and a new global energy function are presented, which use the gradient information and adjacent segment geometric constraint respectively. First get the reliable pixel disparity, then, infer the disparity of un-reliable pixel from the reliable pixel disparity using the neighbor segments cooperative optimization method. In this paper, penalty terms are used to handle the occlusion, the disparity discontinuity and less-texture with segmentation information. We use image pairs to test, which are still more challenging than the standard stereo benchmarks such as the Middlebury Teddy and Cones images, due to their larger disparity range and higher percentage of un-textured surfaces. Experimental results demonstrate the outstanding performance of the proposed method in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信