Jenna E. Cotter, A. Atchley, B. Banz, N. Tenhundfeld
{"title":"我的用户是否受损?设计监视用户状态的自适应自动化","authors":"Jenna E. Cotter, A. Atchley, B. Banz, N. Tenhundfeld","doi":"10.1109/SIEDS52267.2021.9483731","DOIUrl":null,"url":null,"abstract":"According to the United States Department of Justice, 28 people in the United States die every day because of drunk driving. As self-driving vehicles become more prevalent, the ability for automated cars to determine when the driver is impaired and to then take control, could save many lives. Past research has looked at the certain indicators for impaired driving, but to date there has been relatively little consideration of the potential interaction between an impaired driver and a self-driving vehicle. In this paper, we will review the existing literature in order to recap the possible approaches vehicle manufacturers could take in establishing that a driver is impaired: physiological, behavioral, and vigilance monitoring. These approaches will be contrasted with one another. Following the review, we will propose several design solutions to be developed and tested. These solutions include a ‘full’, ‘partial’, and ‘supervisory’ takeover by the vehicle. Our full takeover proposed design will provide no opportunity for driver input at any point. Our partial takeover proposed design will involve a full takeover, but with additional impairment tests that the driver can perform in order to demonstrate capacity to drive. Finally, our supervisory takeover proposed design will involve the system actively monitoring performance in order to more quickly engage safety procedures (e.g. lane keep and emergency braking). The relative benefits and consequences of each design will be discussed with an eye towards existing theories on human-automation interaction. Finally, we will propose a path forward for design and testing. Taken together, this paper will present a novel consideration of a new avenue for human-machine teaming. Such considerations could be instrumental in saving thousands of lives each year, and helping to prevent countless other injuries.","PeriodicalId":426747,"journal":{"name":"2021 Systems and Information Engineering Design Symposium (SIEDS)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Is my User Impaired? Designing Adaptive Automation that Monitors the User’s State\",\"authors\":\"Jenna E. Cotter, A. Atchley, B. Banz, N. Tenhundfeld\",\"doi\":\"10.1109/SIEDS52267.2021.9483731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the United States Department of Justice, 28 people in the United States die every day because of drunk driving. As self-driving vehicles become more prevalent, the ability for automated cars to determine when the driver is impaired and to then take control, could save many lives. Past research has looked at the certain indicators for impaired driving, but to date there has been relatively little consideration of the potential interaction between an impaired driver and a self-driving vehicle. In this paper, we will review the existing literature in order to recap the possible approaches vehicle manufacturers could take in establishing that a driver is impaired: physiological, behavioral, and vigilance monitoring. These approaches will be contrasted with one another. Following the review, we will propose several design solutions to be developed and tested. These solutions include a ‘full’, ‘partial’, and ‘supervisory’ takeover by the vehicle. Our full takeover proposed design will provide no opportunity for driver input at any point. Our partial takeover proposed design will involve a full takeover, but with additional impairment tests that the driver can perform in order to demonstrate capacity to drive. Finally, our supervisory takeover proposed design will involve the system actively monitoring performance in order to more quickly engage safety procedures (e.g. lane keep and emergency braking). The relative benefits and consequences of each design will be discussed with an eye towards existing theories on human-automation interaction. Finally, we will propose a path forward for design and testing. Taken together, this paper will present a novel consideration of a new avenue for human-machine teaming. Such considerations could be instrumental in saving thousands of lives each year, and helping to prevent countless other injuries.\",\"PeriodicalId\":426747,\"journal\":{\"name\":\"2021 Systems and Information Engineering Design Symposium (SIEDS)\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Systems and Information Engineering Design Symposium (SIEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIEDS52267.2021.9483731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Systems and Information Engineering Design Symposium (SIEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIEDS52267.2021.9483731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Is my User Impaired? Designing Adaptive Automation that Monitors the User’s State
According to the United States Department of Justice, 28 people in the United States die every day because of drunk driving. As self-driving vehicles become more prevalent, the ability for automated cars to determine when the driver is impaired and to then take control, could save many lives. Past research has looked at the certain indicators for impaired driving, but to date there has been relatively little consideration of the potential interaction between an impaired driver and a self-driving vehicle. In this paper, we will review the existing literature in order to recap the possible approaches vehicle manufacturers could take in establishing that a driver is impaired: physiological, behavioral, and vigilance monitoring. These approaches will be contrasted with one another. Following the review, we will propose several design solutions to be developed and tested. These solutions include a ‘full’, ‘partial’, and ‘supervisory’ takeover by the vehicle. Our full takeover proposed design will provide no opportunity for driver input at any point. Our partial takeover proposed design will involve a full takeover, but with additional impairment tests that the driver can perform in order to demonstrate capacity to drive. Finally, our supervisory takeover proposed design will involve the system actively monitoring performance in order to more quickly engage safety procedures (e.g. lane keep and emergency braking). The relative benefits and consequences of each design will be discussed with an eye towards existing theories on human-automation interaction. Finally, we will propose a path forward for design and testing. Taken together, this paper will present a novel consideration of a new avenue for human-machine teaming. Such considerations could be instrumental in saving thousands of lives each year, and helping to prevent countless other injuries.