持续学习的适应性可塑性改进

Yanyan Liang, Wu-Jun Li
{"title":"持续学习的适应性可塑性改进","authors":"Yanyan Liang, Wu-Jun Li","doi":"10.1109/CVPR52729.2023.00755","DOIUrl":null,"url":null,"abstract":"Many works have tried to solve the catastrophic forgetting (CF) problem in continual learning (lifelong learning). However, pursuing non-forgetting on old tasks may damage the model's plasticity for new tasks. Although some methods have been proposed to achieve stability-plasticity trade-off, no methods have considered evaluating a model's plasticity and improving plasticity adaptively for a new task. In this work, we propose a new method, called adaptive plasticity improvement (API), for continual learning. Besides the ability to overcome CF on old tasks, API also tries to evaluate the model's plasticity and then adaptively improve the model's plasticity for learning a new task if necessary. Experiments on several real datasets show that API can outperform other state-of-the-art baselines in terms of both accuracy and memory usage.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Plasticity Improvement for Continual Learning\",\"authors\":\"Yanyan Liang, Wu-Jun Li\",\"doi\":\"10.1109/CVPR52729.2023.00755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many works have tried to solve the catastrophic forgetting (CF) problem in continual learning (lifelong learning). However, pursuing non-forgetting on old tasks may damage the model's plasticity for new tasks. Although some methods have been proposed to achieve stability-plasticity trade-off, no methods have considered evaluating a model's plasticity and improving plasticity adaptively for a new task. In this work, we propose a new method, called adaptive plasticity improvement (API), for continual learning. Besides the ability to overcome CF on old tasks, API also tries to evaluate the model's plasticity and then adaptively improve the model's plasticity for learning a new task if necessary. Experiments on several real datasets show that API can outperform other state-of-the-art baselines in terms of both accuracy and memory usage.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.00755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.00755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究都试图解决持续学习(终身学习)中的灾难性遗忘(CF)问题。然而,在旧任务中追求不遗忘可能会损害模型对新任务的可塑性。虽然已经提出了一些方法来实现稳定性和可塑性的权衡,但没有方法考虑评估模型的可塑性并自适应地提高新任务的可塑性。在这项工作中,我们提出了一种新的方法,称为自适应可塑性改进(API),用于持续学习。除了克服旧任务上的CF的能力外,API还试图评估模型的可塑性,然后在必要时自适应地提高模型学习新任务的可塑性。在几个真实数据集上的实验表明,API在准确性和内存使用方面都优于其他最先进的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Plasticity Improvement for Continual Learning
Many works have tried to solve the catastrophic forgetting (CF) problem in continual learning (lifelong learning). However, pursuing non-forgetting on old tasks may damage the model's plasticity for new tasks. Although some methods have been proposed to achieve stability-plasticity trade-off, no methods have considered evaluating a model's plasticity and improving plasticity adaptively for a new task. In this work, we propose a new method, called adaptive plasticity improvement (API), for continual learning. Besides the ability to overcome CF on old tasks, API also tries to evaluate the model's plasticity and then adaptively improve the model's plasticity for learning a new task if necessary. Experiments on several real datasets show that API can outperform other state-of-the-art baselines in terms of both accuracy and memory usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信