基于特征分解的最大似然运动分割

A. Robles-Kelly, E. Hancock
{"title":"基于特征分解的最大似然运动分割","authors":"A. Robles-Kelly, E. Hancock","doi":"10.1109/ICIAP.2001.956986","DOIUrl":null,"url":null,"abstract":"This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.","PeriodicalId":365627,"journal":{"name":"Proceedings 11th International Conference on Image Analysis and Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Maximum likelihood motion segmentation using eigendecomposition\",\"authors\":\"A. Robles-Kelly, E. Hancock\",\"doi\":\"10.1109/ICIAP.2001.956986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.\",\"PeriodicalId\":365627,\"journal\":{\"name\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Image Analysis and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAP.2001.956986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Image Analysis and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2001.956986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种用于运动分割的迭代极大似然框架。我们的分割问题的表示是基于对像素块的运动向量的相似矩阵。通过将特征分解应用于相似矩阵,我们开发了一种最大似然方法,将像素块分组为共享共同运动向量的对象。我们在许多真实世界的运动序列上实验了得到的聚类方法。这里的地面真实数据表明,该方法可以导致低至3%的运动分类误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum likelihood motion segmentation using eigendecomposition
This paper presents an iterative maximum likelihood framework for motion segmentation. Our representation of the segmentation problem is based on a similarity matrix for the motion vectors for pairs of pixel blocks. By applying eigendecomposition to the similarity matrix, we develop a maximum likelihood method for grouping the pixel blocks into objects which share a common motion vector. We experiment with the resulting clustering method on a number of real-world motion sequences. Here ground truth data indicates that the method can result in motion classification errors as low as 3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信