多核GPU上的稀疏矩阵计算

M. Garland
{"title":"多核GPU上的稀疏矩阵计算","authors":"M. Garland","doi":"10.1145/1391469.1391473","DOIUrl":null,"url":null,"abstract":"Modern microprocessors are becoming increasingly parallel devices, and GPUs are at the leading edge of this trend. Designing parallel algorithms for manycore chips like the GPU can present interesting challenges, particularly for computations on sparse data structures. One particularly common example is the collection of sparse matrix solvers and combinatorial graph algorithms that form the core of many physical simulation techniques. Although seemingly irregular, these operations can often be implemented with data parallel operations that map very well to massively parallel processors.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Sparse matrix computations on manycore GPU’s\",\"authors\":\"M. Garland\",\"doi\":\"10.1145/1391469.1391473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern microprocessors are becoming increasingly parallel devices, and GPUs are at the leading edge of this trend. Designing parallel algorithms for manycore chips like the GPU can present interesting challenges, particularly for computations on sparse data structures. One particularly common example is the collection of sparse matrix solvers and combinatorial graph algorithms that form the core of many physical simulation techniques. Although seemingly irregular, these operations can often be implemented with data parallel operations that map very well to massively parallel processors.\",\"PeriodicalId\":412696,\"journal\":{\"name\":\"2008 45th ACM/IEEE Design Automation Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 45th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1391469.1391473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

现代微处理器正日益成为并行设备,而gpu处于这一趋势的前沿。为像GPU这样的多核芯片设计并行算法可能会带来有趣的挑战,特别是对于稀疏数据结构的计算。一个特别常见的例子是稀疏矩阵求解器和组合图算法的集合,它们构成了许多物理模拟技术的核心。尽管这些操作看似不规则,但通常可以通过数据并行操作来实现,这些操作可以很好地映射到大规模并行处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse matrix computations on manycore GPU’s
Modern microprocessors are becoming increasingly parallel devices, and GPUs are at the leading edge of this trend. Designing parallel algorithms for manycore chips like the GPU can present interesting challenges, particularly for computations on sparse data structures. One particularly common example is the collection of sparse matrix solvers and combinatorial graph algorithms that form the core of many physical simulation techniques. Although seemingly irregular, these operations can often be implemented with data parallel operations that map very well to massively parallel processors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信