基于人工神经网络的双栅极finfet建模

Milad Abtin, P. Keshavarzi, K. Jaferzadeh, A. Naderi
{"title":"基于人工神经网络的双栅极finfet建模","authors":"Milad Abtin, P. Keshavarzi, K. Jaferzadeh, A. Naderi","doi":"10.1109/SMELEC.2010.5549475","DOIUrl":null,"url":null,"abstract":"The minimum feature size of the transistors will be decreases in the future years as predicted by the international technology roadmap for semiconductors. Multi-gate FETs such as FinFETs have emerged as the most promising candidates to extend the CMOS scaling into the sub-25nm regime when considering the low scale effects is important for decreasing the scale. Solving and simulating the equations of these devices are so complicated and time consuming. In this paper we use RBF network for simulating the I-V characteristics of common symmetric multi gate FinFETs by using some BSIM-CMG data as a database for training. The results show a good agreement between RBF network and BSIM-CMG. The maximum error between BSIM-CMG and RBF is only 1%. The RBF is used for simulating or predicting I-V curve for different inputs without solving the complicated equations.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling double gate FinFETs by using artificial neural network\",\"authors\":\"Milad Abtin, P. Keshavarzi, K. Jaferzadeh, A. Naderi\",\"doi\":\"10.1109/SMELEC.2010.5549475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimum feature size of the transistors will be decreases in the future years as predicted by the international technology roadmap for semiconductors. Multi-gate FETs such as FinFETs have emerged as the most promising candidates to extend the CMOS scaling into the sub-25nm regime when considering the low scale effects is important for decreasing the scale. Solving and simulating the equations of these devices are so complicated and time consuming. In this paper we use RBF network for simulating the I-V characteristics of common symmetric multi gate FinFETs by using some BSIM-CMG data as a database for training. The results show a good agreement between RBF network and BSIM-CMG. The maximum error between BSIM-CMG and RBF is only 1%. The RBF is used for simulating or predicting I-V curve for different inputs without solving the complicated equations.\",\"PeriodicalId\":308501,\"journal\":{\"name\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2010.5549475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

根据国际半导体技术路线图的预测,未来几年晶体管的最小特征尺寸将会减小。当考虑到低尺度效应对于减小尺度很重要时,多栅极场效应管(如finfet)已经成为将CMOS缩放扩展到25nm以下范围的最有希望的候选者。求解和模拟这些装置的方程是非常复杂和耗时的。本文以BSIM-CMG数据作为训练数据库,利用RBF网络模拟了常见对称多栅极finfet的I-V特性。结果表明,RBF网络与BSIM-CMG网络具有较好的一致性。BSIM-CMG与RBF的最大误差仅为1%。RBF可用于模拟或预测不同输入下的I-V曲线,而无需求解复杂的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling double gate FinFETs by using artificial neural network
The minimum feature size of the transistors will be decreases in the future years as predicted by the international technology roadmap for semiconductors. Multi-gate FETs such as FinFETs have emerged as the most promising candidates to extend the CMOS scaling into the sub-25nm regime when considering the low scale effects is important for decreasing the scale. Solving and simulating the equations of these devices are so complicated and time consuming. In this paper we use RBF network for simulating the I-V characteristics of common symmetric multi gate FinFETs by using some BSIM-CMG data as a database for training. The results show a good agreement between RBF network and BSIM-CMG. The maximum error between BSIM-CMG and RBF is only 1%. The RBF is used for simulating or predicting I-V curve for different inputs without solving the complicated equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信