基于不同人工神经网络分类器的人类活动识别

Burak Çatalbaş, Bahadır Çatalbaş, Ö. Morgül
{"title":"基于不同人工神经网络分类器的人类活动识别","authors":"Burak Çatalbaş, Bahadır Çatalbaş, Ö. Morgül","doi":"10.1109/SIU.2017.7960559","DOIUrl":null,"url":null,"abstract":"Human Activity Recognition is a popular topic of research, with the importance it carries and its limited feature vector, to reach high success rates because of the difficulty faced in classification. With the increase of movement measurability for individuals via inertia measuring units embedded inside the smartphones, the data amount increases which lets new classifiers to be designed with higher success in this field. Artificial neural networks can perform better at such classification problems in comparison to conventional classifiers. In this work, various artificial neural networks have been tried to form a classifier for the University of California (UCI) Human Activity Recognition dataset and resulting success rates for those classifiers are compared with existing results for same dataset in the literature.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Human activity recognition with different artificial neural network based classifiers\",\"authors\":\"Burak Çatalbaş, Bahadır Çatalbaş, Ö. Morgül\",\"doi\":\"10.1109/SIU.2017.7960559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human Activity Recognition is a popular topic of research, with the importance it carries and its limited feature vector, to reach high success rates because of the difficulty faced in classification. With the increase of movement measurability for individuals via inertia measuring units embedded inside the smartphones, the data amount increases which lets new classifiers to be designed with higher success in this field. Artificial neural networks can perform better at such classification problems in comparison to conventional classifiers. In this work, various artificial neural networks have been tried to form a classifier for the University of California (UCI) Human Activity Recognition dataset and resulting success rates for those classifiers are compared with existing results for same dataset in the literature.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

人体活动识别是一个热门的研究课题,由于其重要性和有限的特征向量,在分类中面临的困难使其达到较高的成功率。随着智能手机内置的惯性测量单元对个人运动可测量性的增加,数据量的增加使得新的分类器在该领域的设计成功率更高。与传统分类器相比,人工神经网络在这类分类问题上表现更好。在这项工作中,已经尝试了各种人工神经网络来为加州大学(UCI)人类活动识别数据集形成分类器,并将这些分类器的成功率与文献中相同数据集的现有结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human activity recognition with different artificial neural network based classifiers
Human Activity Recognition is a popular topic of research, with the importance it carries and its limited feature vector, to reach high success rates because of the difficulty faced in classification. With the increase of movement measurability for individuals via inertia measuring units embedded inside the smartphones, the data amount increases which lets new classifiers to be designed with higher success in this field. Artificial neural networks can perform better at such classification problems in comparison to conventional classifiers. In this work, various artificial neural networks have been tried to form a classifier for the University of California (UCI) Human Activity Recognition dataset and resulting success rates for those classifiers are compared with existing results for same dataset in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信