Yuanyuan Li, T. Si Salem, G. Neglia, Stratis Ioannidis
{"title":"具有对抗性保证的在线缓存网络","authors":"Yuanyuan Li, T. Si Salem, G. Neglia, Stratis Ioannidis","doi":"10.1145/3491047","DOIUrl":null,"url":null,"abstract":"We study a cache network under arbitrary adversarial request arrivals. We propose a distributed online policy based on the online tabular greedy algorithm. Our distributed policy achieves sublinear (1-1/e)-regret, also in the case when update costs cannot be neglected. Numerical evaluation over several topologies supports our theoretical results and demonstrates that our algorithm outperforms state-of-art online cache algorithms.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Online Caching Networks with Adversarial Guarantees\",\"authors\":\"Yuanyuan Li, T. Si Salem, G. Neglia, Stratis Ioannidis\",\"doi\":\"10.1145/3491047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a cache network under arbitrary adversarial request arrivals. We propose a distributed online policy based on the online tabular greedy algorithm. Our distributed policy achieves sublinear (1-1/e)-regret, also in the case when update costs cannot be neglected. Numerical evaluation over several topologies supports our theoretical results and demonstrates that our algorithm outperforms state-of-art online cache algorithms.\",\"PeriodicalId\":426760,\"journal\":{\"name\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Measurement and Analysis of Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Caching Networks with Adversarial Guarantees
We study a cache network under arbitrary adversarial request arrivals. We propose a distributed online policy based on the online tabular greedy algorithm. Our distributed policy achieves sublinear (1-1/e)-regret, also in the case when update costs cannot be neglected. Numerical evaluation over several topologies supports our theoretical results and demonstrates that our algorithm outperforms state-of-art online cache algorithms.