{"title":"功能梯度材料涂层的轴对称压痕响应","authors":"Tie-Jun Liu","doi":"10.5772/intechopen.89312","DOIUrl":null,"url":null,"abstract":"In this chapter, the indentation response of the functionally graded material (FGM) coating is considered due to the contact between the coating and axisymmetric indenter. The mechanical properties of FGM coating is assumed to vary along the thickness direction. Three kinds of models are applied to simulate the variation of elastic parameter in the FGM coating based on the cylindrical coordinate system. The axisymmetric frictionless and partial slip contact problems are reduced to a set of Cauchy singular integral equations that can be numerically calculated by using the Hankel integral transform technique and the transfer matrix method. The effect of gradient of coating on the distribution of contact stress is presented. The present investigation will provide the guidance for the indentation experiment of coating.","PeriodicalId":127147,"journal":{"name":"Mechanics of Functionally Graded Materials and Structures","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axisymmetric Indentation Response of Functionally Graded Material Coating\",\"authors\":\"Tie-Jun Liu\",\"doi\":\"10.5772/intechopen.89312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the indentation response of the functionally graded material (FGM) coating is considered due to the contact between the coating and axisymmetric indenter. The mechanical properties of FGM coating is assumed to vary along the thickness direction. Three kinds of models are applied to simulate the variation of elastic parameter in the FGM coating based on the cylindrical coordinate system. The axisymmetric frictionless and partial slip contact problems are reduced to a set of Cauchy singular integral equations that can be numerically calculated by using the Hankel integral transform technique and the transfer matrix method. The effect of gradient of coating on the distribution of contact stress is presented. The present investigation will provide the guidance for the indentation experiment of coating.\",\"PeriodicalId\":127147,\"journal\":{\"name\":\"Mechanics of Functionally Graded Materials and Structures\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Functionally Graded Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.89312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Functionally Graded Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.89312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Axisymmetric Indentation Response of Functionally Graded Material Coating
In this chapter, the indentation response of the functionally graded material (FGM) coating is considered due to the contact between the coating and axisymmetric indenter. The mechanical properties of FGM coating is assumed to vary along the thickness direction. Three kinds of models are applied to simulate the variation of elastic parameter in the FGM coating based on the cylindrical coordinate system. The axisymmetric frictionless and partial slip contact problems are reduced to a set of Cauchy singular integral equations that can be numerically calculated by using the Hankel integral transform technique and the transfer matrix method. The effect of gradient of coating on the distribution of contact stress is presented. The present investigation will provide the guidance for the indentation experiment of coating.