语音情绪的谱图表征与分类

H. Palo, Sangeet Sagar
{"title":"语音情绪的谱图表征与分类","authors":"H. Palo, Sangeet Sagar","doi":"10.1109/IADCC.2018.8692126","DOIUrl":null,"url":null,"abstract":"The work attempts to characterize and classify speech emotions using the spectrogram. Initially, it extracts the individual Red, Green, and Blue parameters from the raw speech spectrogram image of every individual emotional utterance. Further, it computes the statistical parameters of individual RGB components to characterize the chosen emotional states. The utterances of anger, happiness, neutral, and sad emotional states from the standard Berlin (EMO-DB) database has been used for this purpose. The individual statistical R, G, and B spectrogram parameters are found to be different within an emotion as well as across emotional states. Thus, these values have been used as different feature sets to classify the designated emotional states using the popular Multilayer Perceptron Neural Network (MLPNN).","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Characterization and Classification of Speech Emotion with Spectrograms\",\"authors\":\"H. Palo, Sangeet Sagar\",\"doi\":\"10.1109/IADCC.2018.8692126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work attempts to characterize and classify speech emotions using the spectrogram. Initially, it extracts the individual Red, Green, and Blue parameters from the raw speech spectrogram image of every individual emotional utterance. Further, it computes the statistical parameters of individual RGB components to characterize the chosen emotional states. The utterances of anger, happiness, neutral, and sad emotional states from the standard Berlin (EMO-DB) database has been used for this purpose. The individual statistical R, G, and B spectrogram parameters are found to be different within an emotion as well as across emotional states. Thus, these values have been used as different feature sets to classify the designated emotional states using the popular Multilayer Perceptron Neural Network (MLPNN).\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究试图利用声谱图对言语情绪进行表征和分类。首先,它从每个情感话语的原始语音谱图图像中提取单个红、绿、蓝参数。此外,它计算单个RGB组件的统计参数来表征所选择的情绪状态。愤怒、快乐、中性和悲伤情绪状态的话语来自标准柏林数据库(EMO-DB)。个体统计R, G和B谱图参数被发现在一种情绪中以及在不同的情绪状态中是不同的。因此,这些值被用作不同的特征集,使用流行的多层感知器神经网络(MLPNN)对指定的情绪状态进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization and Classification of Speech Emotion with Spectrograms
The work attempts to characterize and classify speech emotions using the spectrogram. Initially, it extracts the individual Red, Green, and Blue parameters from the raw speech spectrogram image of every individual emotional utterance. Further, it computes the statistical parameters of individual RGB components to characterize the chosen emotional states. The utterances of anger, happiness, neutral, and sad emotional states from the standard Berlin (EMO-DB) database has been used for this purpose. The individual statistical R, G, and B spectrogram parameters are found to be different within an emotion as well as across emotional states. Thus, these values have been used as different feature sets to classify the designated emotional states using the popular Multilayer Perceptron Neural Network (MLPNN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信