使用数据挖掘识别Rootkit感染

Desmond Lobo, P. Watters, Xin-Wen Wu
{"title":"使用数据挖掘识别Rootkit感染","authors":"Desmond Lobo, P. Watters, Xin-Wen Wu","doi":"10.1109/ICISA.2010.5480359","DOIUrl":null,"url":null,"abstract":"Rootkits refer to software that is used to hide the presence and activity of malware and permit an attacker to take control of a computer system. In our previous work, we focused strictly on identifying rootkits that use inline function hooking techniques to remain hidden. In this paper, we extend our previous work by including rootkits that use other types of hooking techniques, such as those that hook the IATs (Import Address Tables) and SSDTs (System Service Descriptor Tables). Unlike other malware identification techniques, our approach involved conducting dynamic analyses of various rootkits and then determining the family of each rootkit based on the hooks that had been created on the system. We demonstrated the effectiveness of this approach by first using the CLOPE (Clustering with sLOPE) algorithm to cluster a sample of rootkits into several families; next, the ID3 (Iterative Dichotomiser 3) algorithm was utilized to generate a decision tree for identifying the rootkit that had infected a machine.","PeriodicalId":313762,"journal":{"name":"2010 International Conference on Information Science and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Identifying Rootkit Infections Using Data Mining\",\"authors\":\"Desmond Lobo, P. Watters, Xin-Wen Wu\",\"doi\":\"10.1109/ICISA.2010.5480359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rootkits refer to software that is used to hide the presence and activity of malware and permit an attacker to take control of a computer system. In our previous work, we focused strictly on identifying rootkits that use inline function hooking techniques to remain hidden. In this paper, we extend our previous work by including rootkits that use other types of hooking techniques, such as those that hook the IATs (Import Address Tables) and SSDTs (System Service Descriptor Tables). Unlike other malware identification techniques, our approach involved conducting dynamic analyses of various rootkits and then determining the family of each rootkit based on the hooks that had been created on the system. We demonstrated the effectiveness of this approach by first using the CLOPE (Clustering with sLOPE) algorithm to cluster a sample of rootkits into several families; next, the ID3 (Iterative Dichotomiser 3) algorithm was utilized to generate a decision tree for identifying the rootkit that had infected a machine.\",\"PeriodicalId\":313762,\"journal\":{\"name\":\"2010 International Conference on Information Science and Applications\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Information Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2010.5480359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Information Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2010.5480359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

rootkit指的是用来隐藏恶意软件的存在和活动,并允许攻击者控制计算机系统的软件。在我们之前的工作中,我们严格关注于识别使用内联函数挂钩技术保持隐藏的rootkit。在本文中,我们扩展了之前的工作,包括使用其他类型的钩子技术的rootkit,例如那些钩子IATs(导入地址表)和ssdt(系统服务描述符表)的rootkit。与其他恶意软件识别技术不同,我们的方法涉及对各种rootkit进行动态分析,然后根据在系统上创建的钩子确定每个rootkit的家族。我们首先使用CLOPE(聚类与斜率)算法将rootkit样本聚类到几个家族,从而证明了这种方法的有效性;接下来,利用ID3(迭代二分法3)算法生成决策树,以识别感染机器的rootkit。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Rootkit Infections Using Data Mining
Rootkits refer to software that is used to hide the presence and activity of malware and permit an attacker to take control of a computer system. In our previous work, we focused strictly on identifying rootkits that use inline function hooking techniques to remain hidden. In this paper, we extend our previous work by including rootkits that use other types of hooking techniques, such as those that hook the IATs (Import Address Tables) and SSDTs (System Service Descriptor Tables). Unlike other malware identification techniques, our approach involved conducting dynamic analyses of various rootkits and then determining the family of each rootkit based on the hooks that had been created on the system. We demonstrated the effectiveness of this approach by first using the CLOPE (Clustering with sLOPE) algorithm to cluster a sample of rootkits into several families; next, the ID3 (Iterative Dichotomiser 3) algorithm was utilized to generate a decision tree for identifying the rootkit that had infected a machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信