基于案例的基于观察学习的智能体开发推理框架

Michael W. Floyd, B. Esfandiari
{"title":"基于案例的基于观察学习的智能体开发推理框架","authors":"Michael W. Floyd, B. Esfandiari","doi":"10.1109/ICTAI.2011.86","DOIUrl":null,"url":null,"abstract":"Most realistic environments are complex, partially observable and impose real-time constraints on agents operating within them. This paper describes a framework that allows agents to learn by observation in such environments. When learning by observation, agents observe an expert performing a task and learn to perform the same task based on those observations. Our framework aims to allow agents to learn in a variety of domains (physical or virtual) regardless of the behaviour or goals of the observed expert. To achieve this we ensure that there is a clear separation between the central reasoning system and any domain-specific information. We present case studies in the domains of obstacle avoidance, robotic arm control, simulated soccer and Tetris.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"A Case-Based Reasoning Framework for Developing Agents Using Learning by Observation\",\"authors\":\"Michael W. Floyd, B. Esfandiari\",\"doi\":\"10.1109/ICTAI.2011.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most realistic environments are complex, partially observable and impose real-time constraints on agents operating within them. This paper describes a framework that allows agents to learn by observation in such environments. When learning by observation, agents observe an expert performing a task and learn to perform the same task based on those observations. Our framework aims to allow agents to learn in a variety of domains (physical or virtual) regardless of the behaviour or goals of the observed expert. To achieve this we ensure that there is a clear separation between the central reasoning system and any domain-specific information. We present case studies in the domains of obstacle avoidance, robotic arm control, simulated soccer and Tetris.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

大多数现实环境是复杂的,部分可观察的,并对在其中操作的代理施加实时约束。本文描述了一个允许智能体在这种环境中通过观察来学习的框架。当通过观察学习时,智能体观察专家执行任务,并根据这些观察学习执行相同的任务。我们的框架旨在允许代理在各种领域(物理或虚拟)中学习,而不管观察到的专家的行为或目标如何。为了实现这一点,我们确保在中央推理系统和任何特定于领域的信息之间有一个明确的分离。我们在避障、机械臂控制、模拟足球和俄罗斯方块等领域提出了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Case-Based Reasoning Framework for Developing Agents Using Learning by Observation
Most realistic environments are complex, partially observable and impose real-time constraints on agents operating within them. This paper describes a framework that allows agents to learn by observation in such environments. When learning by observation, agents observe an expert performing a task and learn to perform the same task based on those observations. Our framework aims to allow agents to learn in a variety of domains (physical or virtual) regardless of the behaviour or goals of the observed expert. To achieve this we ensure that there is a clear separation between the central reasoning system and any domain-specific information. We present case studies in the domains of obstacle avoidance, robotic arm control, simulated soccer and Tetris.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信