具有节点依赖运动能力的金属和复合材料结构混合一二维模型分析

E. Zappino, E. Carrera
{"title":"具有节点依赖运动能力的金属和复合材料结构混合一二维模型分析","authors":"E. Zappino, E. Carrera","doi":"10.1115/IMECE2018-87490","DOIUrl":null,"url":null,"abstract":"The present paper presents an innovative approach to connect one-/two-dimensional models using a unified formulation with node-dependent kinematic capabilities. These models can use a different kinematics approximation at each node of the element. Carrera Unified Formulation has been used to derive the governing equations in a compact and general form. The possibility to connect one- and two-dimensional elements, and eventually to refine the kinematic model locally, has lead to a general reduction of the computational costs guaranteeing the same numerical accuracy.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed One-/Two-Dimensional Models With Node Dependent Kinematic Capabilities for the Analysis of Metallic and Composite Structures\",\"authors\":\"E. Zappino, E. Carrera\",\"doi\":\"10.1115/IMECE2018-87490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper presents an innovative approach to connect one-/two-dimensional models using a unified formulation with node-dependent kinematic capabilities. These models can use a different kinematics approximation at each node of the element. Carrera Unified Formulation has been used to derive the governing equations in a compact and general form. The possibility to connect one- and two-dimensional elements, and eventually to refine the kinematic model locally, has lead to a general reduction of the computational costs guaranteeing the same numerical accuracy.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-87490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种创新的方法来连接一/二维模型使用统一的公式与节点相关的运动学能力。这些模型可以在单元的每个节点上使用不同的运动学近似。用卡雷拉统一公式推导了控制方程的一般形式。可以将一维和二维单元连接起来,并最终在局部细化运动学模型,从而大大降低了计算成本,保证了相同的数值精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed One-/Two-Dimensional Models With Node Dependent Kinematic Capabilities for the Analysis of Metallic and Composite Structures
The present paper presents an innovative approach to connect one-/two-dimensional models using a unified formulation with node-dependent kinematic capabilities. These models can use a different kinematics approximation at each node of the element. Carrera Unified Formulation has been used to derive the governing equations in a compact and general form. The possibility to connect one- and two-dimensional elements, and eventually to refine the kinematic model locally, has lead to a general reduction of the computational costs guaranteeing the same numerical accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信