数据可视化的上下文感知推荐

W. Kanchana, G. Madushanka, H. Maduranga, M. Udayanga, D. Meedeniya, Galhenage Indika Udaya Shantha Perera
{"title":"数据可视化的上下文感知推荐","authors":"W. Kanchana, G. Madushanka, H. Maduranga, M. Udayanga, D. Meedeniya, Galhenage Indika Udaya Shantha Perera","doi":"10.1145/3018009.3018027","DOIUrl":null,"url":null,"abstract":"Visualization plays a major role in data mining process to convey the findings properly to the users. It is important to select the most appropriate visualization method for a given data set with the right context. Often the data scientists and analysts have to work with data that come from unknown domains; the lack of domain knowledge is a prime reason for incorporating either inappropriate or not optimal visualization techniques. Domain experts can easily recommend commonly used best visualization types for a given data set in that domain. However, availability of a domain expert in every data analysis project cannot be guaranteed. This paper proposes an automated system for suggesting the most suitable visualization method for a given dataset using state of the art recommendation process. Our system is capable of identifying and matching the context of the data to a range of chart types used in mainstream data analytics. This will enable the data scientists to make visualization decisions with limited domain knowledge.","PeriodicalId":189252,"journal":{"name":"Proceedings of the 2nd International Conference on Communication and Information Processing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Context aware recommendation for data visualization\",\"authors\":\"W. Kanchana, G. Madushanka, H. Maduranga, M. Udayanga, D. Meedeniya, Galhenage Indika Udaya Shantha Perera\",\"doi\":\"10.1145/3018009.3018027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization plays a major role in data mining process to convey the findings properly to the users. It is important to select the most appropriate visualization method for a given data set with the right context. Often the data scientists and analysts have to work with data that come from unknown domains; the lack of domain knowledge is a prime reason for incorporating either inappropriate or not optimal visualization techniques. Domain experts can easily recommend commonly used best visualization types for a given data set in that domain. However, availability of a domain expert in every data analysis project cannot be guaranteed. This paper proposes an automated system for suggesting the most suitable visualization method for a given dataset using state of the art recommendation process. Our system is capable of identifying and matching the context of the data to a range of chart types used in mainstream data analytics. This will enable the data scientists to make visualization decisions with limited domain knowledge.\",\"PeriodicalId\":189252,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Communication and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018009.3018027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018009.3018027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

可视化在数据挖掘过程中起着重要的作用,它将发现正确地传达给用户。对于具有正确上下文的给定数据集,选择最合适的可视化方法非常重要。通常,数据科学家和分析师必须处理来自未知领域的数据;缺乏领域知识是采用不适当或非最佳可视化技术的主要原因。领域专家可以很容易地为该领域的给定数据集推荐常用的最佳可视化类型。然而,不能保证每个数据分析项目都有领域专家的可用性。本文提出了一个自动化系统,用于使用最先进的推荐过程为给定数据集推荐最合适的可视化方法。我们的系统能够识别并匹配主流数据分析中使用的一系列图表类型的数据上下文。这将使数据科学家能够在有限的领域知识下做出可视化决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context aware recommendation for data visualization
Visualization plays a major role in data mining process to convey the findings properly to the users. It is important to select the most appropriate visualization method for a given data set with the right context. Often the data scientists and analysts have to work with data that come from unknown domains; the lack of domain knowledge is a prime reason for incorporating either inappropriate or not optimal visualization techniques. Domain experts can easily recommend commonly used best visualization types for a given data set in that domain. However, availability of a domain expert in every data analysis project cannot be guaranteed. This paper proposes an automated system for suggesting the most suitable visualization method for a given dataset using state of the art recommendation process. Our system is capable of identifying and matching the context of the data to a range of chart types used in mainstream data analytics. This will enable the data scientists to make visualization decisions with limited domain knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信