{"title":"基于多分支回归网络的遥感影像建筑分类","authors":"Yuanyuan Gui, Xiang Li, Wei Li, Anzhi Yue","doi":"10.1109/PRRS.2018.8486177","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNN) are widely used for processing high-resolution remote sensing images like segmentation or classification, and have been demonstrated excellent performance in recent years. In this paper, a novel classification framework based on segmentation method, called Multi-branch regression network (named as MBR-Net) is proposed. The proposed method can generate multiple losses rely on training images in different size of information. In addition, a complete training strategy for classifying remote sensing images, which can reduce the influence of uneven samples is also developed. Experimental results with Inrial aerial dataset demonstrate that the proposed framework can provide much better results compared to state-of-the-art U-Net and generate fine-grained prediction maps.","PeriodicalId":197319,"journal":{"name":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Branch Regression Network For Building Classification Using Remote Sensing Images\",\"authors\":\"Yuanyuan Gui, Xiang Li, Wei Li, Anzhi Yue\",\"doi\":\"10.1109/PRRS.2018.8486177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNN) are widely used for processing high-resolution remote sensing images like segmentation or classification, and have been demonstrated excellent performance in recent years. In this paper, a novel classification framework based on segmentation method, called Multi-branch regression network (named as MBR-Net) is proposed. The proposed method can generate multiple losses rely on training images in different size of information. In addition, a complete training strategy for classifying remote sensing images, which can reduce the influence of uneven samples is also developed. Experimental results with Inrial aerial dataset demonstrate that the proposed framework can provide much better results compared to state-of-the-art U-Net and generate fine-grained prediction maps.\",\"PeriodicalId\":197319,\"journal\":{\"name\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRRS.2018.8486177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRRS.2018.8486177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Branch Regression Network For Building Classification Using Remote Sensing Images
Convolutional neural networks (CNN) are widely used for processing high-resolution remote sensing images like segmentation or classification, and have been demonstrated excellent performance in recent years. In this paper, a novel classification framework based on segmentation method, called Multi-branch regression network (named as MBR-Net) is proposed. The proposed method can generate multiple losses rely on training images in different size of information. In addition, a complete training strategy for classifying remote sensing images, which can reduce the influence of uneven samples is also developed. Experimental results with Inrial aerial dataset demonstrate that the proposed framework can provide much better results compared to state-of-the-art U-Net and generate fine-grained prediction maps.