线性增强深度神经网络

Pegah Ghahremani, J. Droppo, M. Seltzer
{"title":"线性增强深度神经网络","authors":"Pegah Ghahremani, J. Droppo, M. Seltzer","doi":"10.1109/ICASSP.2016.7472646","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNN) are a powerful tool for many large vocabulary continuous speech recognition (LVCSR) tasks. Training a very deep network is a challenging problem and pre-training techniques are needed in order to achieve the best results. In this paper, we propose a new type of network architecture, Linear Augmented Deep Neural Network (LA-DNN). This type of network augments each non-linear layer with a linear connection from layer input to layer output. The resulting LA-DNN model eliminates the need for pre-training, addresses the gradient vanishing problem for deep networks, has higher capacity in modeling linear transformations, trains significantly faster than normal DNN, and produces better acoustic models. The proposed model has been evaluated on TIMIT phoneme recognition and AMI speech recognition tasks. Experimental results show that the LA-DNN models can have 70% fewer parameters than a DNN, while still improving accuracy. On the TIMIT phoneme recognition task, the smaller LA-DNN model improves TIMIT phone accuracy by 2% absolute, and AMI word accuracy by 1.7% absolute.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Linearly augmented deep neural network\",\"authors\":\"Pegah Ghahremani, J. Droppo, M. Seltzer\",\"doi\":\"10.1109/ICASSP.2016.7472646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNN) are a powerful tool for many large vocabulary continuous speech recognition (LVCSR) tasks. Training a very deep network is a challenging problem and pre-training techniques are needed in order to achieve the best results. In this paper, we propose a new type of network architecture, Linear Augmented Deep Neural Network (LA-DNN). This type of network augments each non-linear layer with a linear connection from layer input to layer output. The resulting LA-DNN model eliminates the need for pre-training, addresses the gradient vanishing problem for deep networks, has higher capacity in modeling linear transformations, trains significantly faster than normal DNN, and produces better acoustic models. The proposed model has been evaluated on TIMIT phoneme recognition and AMI speech recognition tasks. Experimental results show that the LA-DNN models can have 70% fewer parameters than a DNN, while still improving accuracy. On the TIMIT phoneme recognition task, the smaller LA-DNN model improves TIMIT phone accuracy by 2% absolute, and AMI word accuracy by 1.7% absolute.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

深度神经网络(DNN)是解决大词汇量连续语音识别(LVCSR)任务的有力工具。训练一个非常深的网络是一个具有挑战性的问题,为了达到最佳效果,需要预训练技术。在本文中,我们提出了一种新的网络结构,线性增强深度神经网络(LA-DNN)。这种类型的网络通过从层输入到层输出的线性连接来增强每个非线性层。得到的LA-DNN模型消除了预训练的需要,解决了深度网络的梯度消失问题,具有更高的线性变换建模能力,训练速度明显快于普通DNN,并且产生更好的声学模型。在TIMIT音素识别和AMI语音识别任务中对该模型进行了评价。实验结果表明,与DNN模型相比,LA-DNN模型的参数可以减少70%,同时仍能提高准确率。在TIMIT音素识别任务上,较小的LA-DNN模型将TIMIT电话的绝对准确率提高了2%,AMI单词的绝对准确率提高了1.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linearly augmented deep neural network
Deep neural networks (DNN) are a powerful tool for many large vocabulary continuous speech recognition (LVCSR) tasks. Training a very deep network is a challenging problem and pre-training techniques are needed in order to achieve the best results. In this paper, we propose a new type of network architecture, Linear Augmented Deep Neural Network (LA-DNN). This type of network augments each non-linear layer with a linear connection from layer input to layer output. The resulting LA-DNN model eliminates the need for pre-training, addresses the gradient vanishing problem for deep networks, has higher capacity in modeling linear transformations, trains significantly faster than normal DNN, and produces better acoustic models. The proposed model has been evaluated on TIMIT phoneme recognition and AMI speech recognition tasks. Experimental results show that the LA-DNN models can have 70% fewer parameters than a DNN, while still improving accuracy. On the TIMIT phoneme recognition task, the smaller LA-DNN model improves TIMIT phone accuracy by 2% absolute, and AMI word accuracy by 1.7% absolute.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信