通过相位一致性分析的单图像超分辨率

Licheng Yu, Yi Xu, Bo Zhang
{"title":"通过相位一致性分析的单图像超分辨率","authors":"Licheng Yu, Yi Xu, Bo Zhang","doi":"10.1109/VCIP.2013.6706398","DOIUrl":null,"url":null,"abstract":"Single image super-resolution (SR) is a severely unconstrained task. While the self-example-based methods are able to reproduce sharp edges, they perform poorly for textures. For recovering the fine details, higher-level image segmentation and corresponding external texture database are employed in the example-based SR methods, but they involve too much human interaction. In this paper, we discuss the existing problems of example-based technique using scale space analysis. Accordingly, a robust pixel classification method is designed based on the phase congruency model in scale space, which can effectively divide images into edges, textures and flat regions. Then a super-resolution framework is proposed, which can adaptively emphasize the importance of high-frequency residuals in structural examples and scale invariant fractal property in textural regions. Experimental results show that our SR approach is able to present both sharp edges and vivid textures with few artifacts.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single image super-resolution via phase congruency analysis\",\"authors\":\"Licheng Yu, Yi Xu, Bo Zhang\",\"doi\":\"10.1109/VCIP.2013.6706398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single image super-resolution (SR) is a severely unconstrained task. While the self-example-based methods are able to reproduce sharp edges, they perform poorly for textures. For recovering the fine details, higher-level image segmentation and corresponding external texture database are employed in the example-based SR methods, but they involve too much human interaction. In this paper, we discuss the existing problems of example-based technique using scale space analysis. Accordingly, a robust pixel classification method is designed based on the phase congruency model in scale space, which can effectively divide images into edges, textures and flat regions. Then a super-resolution framework is proposed, which can adaptively emphasize the importance of high-frequency residuals in structural examples and scale invariant fractal property in textural regions. Experimental results show that our SR approach is able to present both sharp edges and vivid textures with few artifacts.\",\"PeriodicalId\":407080,\"journal\":{\"name\":\"2013 Visual Communications and Image Processing (VCIP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP.2013.6706398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

单幅图像超分辨率(SR)是一个非常不受约束的任务。虽然基于自例的方法能够再现尖锐的边缘,但它们对纹理的表现不佳。为了恢复精细细节,基于实例的SR方法采用了更高层次的图像分割和相应的外部纹理数据库,但涉及到过多的人机交互。本文利用尺度空间分析方法,讨论了基于实例技术存在的问题。据此,设计了一种基于尺度空间相一致性模型的鲁棒像素分类方法,可以有效地将图像划分为边缘、纹理和平面区域。然后提出了一种超分辨框架,该框架可以自适应地强调结构样本中的高频残差和纹理区域的尺度不变分形性质的重要性。实验结果表明,该方法既能呈现出锐利的边缘,又能呈现出逼真的纹理,而且伪影较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single image super-resolution via phase congruency analysis
Single image super-resolution (SR) is a severely unconstrained task. While the self-example-based methods are able to reproduce sharp edges, they perform poorly for textures. For recovering the fine details, higher-level image segmentation and corresponding external texture database are employed in the example-based SR methods, but they involve too much human interaction. In this paper, we discuss the existing problems of example-based technique using scale space analysis. Accordingly, a robust pixel classification method is designed based on the phase congruency model in scale space, which can effectively divide images into edges, textures and flat regions. Then a super-resolution framework is proposed, which can adaptively emphasize the importance of high-frequency residuals in structural examples and scale invariant fractal property in textural regions. Experimental results show that our SR approach is able to present both sharp edges and vivid textures with few artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信