通过SAR数据中的自动编码器框架缓解RFI

Jiang Liu, Yunxuan Wang, Yuan Mao, Junli Chen, Yanyang Liu, Yan Huang
{"title":"通过SAR数据中的自动编码器框架缓解RFI","authors":"Jiang Liu, Yunxuan Wang, Yuan Mao, Junli Chen, Yanyang Liu, Yan Huang","doi":"10.46620/rfi22-013","DOIUrl":null,"url":null,"abstract":"features of targets in the images and further be employed to classify different targets. Previous methods, such as the deep convolutional neural network (DCNN), were used to mitigate both narrowband and wideband interferences in SAR images (W. Fan, F. Zhou, et. al., Remote Sens., 11(14), 1654, 2019). For the unsupervised learning frameworks, such as auto-encoder (Y. Wang, H. Yao, et. al., Neurocomputing, 184, 232-242, 2016) and generative adversarial network (GAN) (I. Goodfellow, J. Pouget-Abadi, M. Mirza, et al, Advances in neural information processing systems, 27, 2014), they can discover naturally intrinsic property of the data without any pre-assigned labels and are widely leveraged in the image denoising area. Also, the PCA-based unsupervised learning methods (M. Tao, J. Su, et. al, Remote Sens., 11, 2438, 2019) are widely used to mitigate RFIs in the corrupted SAR data. Therefore, we come out an idea that the unsupervised learning frameworks have great potential on separate the RFI and the useful data. In this paper, we use an auto-encoder framework, combining real and imaginary parts of complex radar data as two branches, to mitigate strong RFIs from corrupted SAR data. It brings another perspective for RFI mitigation via deep unsupervised learning approach.","PeriodicalId":186234,"journal":{"name":"Proceedings for RFI 2022","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RFI Mitigation via Auto-Encoder Framework in SAR Data\",\"authors\":\"Jiang Liu, Yunxuan Wang, Yuan Mao, Junli Chen, Yanyang Liu, Yan Huang\",\"doi\":\"10.46620/rfi22-013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"features of targets in the images and further be employed to classify different targets. Previous methods, such as the deep convolutional neural network (DCNN), were used to mitigate both narrowband and wideband interferences in SAR images (W. Fan, F. Zhou, et. al., Remote Sens., 11(14), 1654, 2019). For the unsupervised learning frameworks, such as auto-encoder (Y. Wang, H. Yao, et. al., Neurocomputing, 184, 232-242, 2016) and generative adversarial network (GAN) (I. Goodfellow, J. Pouget-Abadi, M. Mirza, et al, Advances in neural information processing systems, 27, 2014), they can discover naturally intrinsic property of the data without any pre-assigned labels and are widely leveraged in the image denoising area. Also, the PCA-based unsupervised learning methods (M. Tao, J. Su, et. al, Remote Sens., 11, 2438, 2019) are widely used to mitigate RFIs in the corrupted SAR data. Therefore, we come out an idea that the unsupervised learning frameworks have great potential on separate the RFI and the useful data. In this paper, we use an auto-encoder framework, combining real and imaginary parts of complex radar data as two branches, to mitigate strong RFIs from corrupted SAR data. It brings another perspective for RFI mitigation via deep unsupervised learning approach.\",\"PeriodicalId\":186234,\"journal\":{\"name\":\"Proceedings for RFI 2022\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings for RFI 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46620/rfi22-013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings for RFI 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46620/rfi22-013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用图像中目标的特征,进一步对不同目标进行分类。以前的方法,如深度卷积神经网络(DCNN),被用来减轻SAR图像中的窄带和宽带干扰(范伟,周峰等,遥感,11(14),1654,2019)。对于无监督学习框架,如自编码器(Y. Wang, H. Yao, et al., Neurocomputing, 184, 232-242, 2016)和生成式对抗网络(GAN) (I. Goodfellow, J. Pouget-Abadi, M. Mirza, et al., Advances in neural information processing systems, 27, 2014),它们可以在没有任何预先分配标签的情况下发现数据的自然固有属性,并广泛用于图像去干扰领域。此外,基于pca的无监督学习方法(M. Tao, J. Su, et al ., Remote Sens., 11, 2438, 2019)被广泛用于减轻损坏SAR数据中的rfi。因此,我们认为无监督学习框架在分离RFI和有用数据方面具有很大的潜力。在本文中,我们使用一个自动编码器框架,结合复杂雷达数据的实部和虚部作为两个分支,以减轻来自损坏SAR数据的强rfi。它为通过深度无监督学习方法缓解RFI带来了另一种视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RFI Mitigation via Auto-Encoder Framework in SAR Data
features of targets in the images and further be employed to classify different targets. Previous methods, such as the deep convolutional neural network (DCNN), were used to mitigate both narrowband and wideband interferences in SAR images (W. Fan, F. Zhou, et. al., Remote Sens., 11(14), 1654, 2019). For the unsupervised learning frameworks, such as auto-encoder (Y. Wang, H. Yao, et. al., Neurocomputing, 184, 232-242, 2016) and generative adversarial network (GAN) (I. Goodfellow, J. Pouget-Abadi, M. Mirza, et al, Advances in neural information processing systems, 27, 2014), they can discover naturally intrinsic property of the data without any pre-assigned labels and are widely leveraged in the image denoising area. Also, the PCA-based unsupervised learning methods (M. Tao, J. Su, et. al, Remote Sens., 11, 2438, 2019) are widely used to mitigate RFIs in the corrupted SAR data. Therefore, we come out an idea that the unsupervised learning frameworks have great potential on separate the RFI and the useful data. In this paper, we use an auto-encoder framework, combining real and imaginary parts of complex radar data as two branches, to mitigate strong RFIs from corrupted SAR data. It brings another perspective for RFI mitigation via deep unsupervised learning approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信