基于区块链的隐私保护联邦学习边缘计算框架

Shili Hu, Jiangfeng Li, Chenxi Zhang, Qinpei Zhao, Wei Ye
{"title":"基于区块链的隐私保护联邦学习边缘计算框架","authors":"Shili Hu, Jiangfeng Li, Chenxi Zhang, Qinpei Zhao, Wei Ye","doi":"10.1109/Blockchain53845.2021.00085","DOIUrl":null,"url":null,"abstract":"Nowadays, privacy-preserving artificial intelligence is gaining traction, with the goal of learning multiple models based on private data without leaking any personal information. Since the existing multi-party computation methods and other encryption-based methods have their flaws, we developed our own blockchain-based edge computing framework to achieve the decentralization and enhance the efficiency. Our framework enables a trustful, simplified and asynchronous federated learning in IoT and provides a convenient and secret classification service. Extensive evaluations on efficiency are provided, confirming the performance of our solutions.","PeriodicalId":372721,"journal":{"name":"2021 IEEE International Conference on Blockchain (Blockchain)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning\",\"authors\":\"Shili Hu, Jiangfeng Li, Chenxi Zhang, Qinpei Zhao, Wei Ye\",\"doi\":\"10.1109/Blockchain53845.2021.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, privacy-preserving artificial intelligence is gaining traction, with the goal of learning multiple models based on private data without leaking any personal information. Since the existing multi-party computation methods and other encryption-based methods have their flaws, we developed our own blockchain-based edge computing framework to achieve the decentralization and enhance the efficiency. Our framework enables a trustful, simplified and asynchronous federated learning in IoT and provides a convenient and secret classification service. Extensive evaluations on efficiency are provided, confirming the performance of our solutions.\",\"PeriodicalId\":372721,\"journal\":{\"name\":\"2021 IEEE International Conference on Blockchain (Blockchain)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Blockchain (Blockchain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Blockchain53845.2021.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Blockchain (Blockchain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Blockchain53845.2021.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,保护隐私的人工智能越来越受欢迎,其目标是在不泄露任何个人信息的情况下,基于隐私数据学习多个模型。由于现有的多方计算方法和其他基于加密的方法存在缺陷,我们开发了自己的基于区块链的边缘计算框架,以实现去中心化和提高效率。我们的框架实现了物联网中可信、简化和异步的联邦学习,并提供了方便和保密的分类服务。提供了广泛的效率评估,确认了我们解决方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning
Nowadays, privacy-preserving artificial intelligence is gaining traction, with the goal of learning multiple models based on private data without leaking any personal information. Since the existing multi-party computation methods and other encryption-based methods have their flaws, we developed our own blockchain-based edge computing framework to achieve the decentralization and enhance the efficiency. Our framework enables a trustful, simplified and asynchronous federated learning in IoT and provides a convenient and secret classification service. Extensive evaluations on efficiency are provided, confirming the performance of our solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信