基于模糊集理论和元胞学习自动机的混合边缘检测方法

Saman Sinaie, A. Ghanizadeh, Emadaldin Mozafari Majd, S. Shamsuddin
{"title":"基于模糊集理论和元胞学习自动机的混合边缘检测方法","authors":"Saman Sinaie, A. Ghanizadeh, Emadaldin Mozafari Majd, S. Shamsuddin","doi":"10.1109/ICCSA.2009.19","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid edge detection method based on fuzzy sets and cellular learning automata is proposed. At first, existing methods of edge detection and their problems are discussed and then a high performance method for edge detection, that can extract edges more precisely by using only fuzzy sets than by other edge detection methods, is suggested. After that the edges improve incredibly by using cellular learning automata. In the end, we compare it with popular edge detection methods such as Sobel and Canny. The proposed method does not need parameter settings as Canny edge detector does, and it can detect edges more smoothly in a shorter amount of time while other edge detectors cannot.","PeriodicalId":387286,"journal":{"name":"2009 International Conference on Computational Science and Its Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"A Hybrid Edge Detection Method Based on Fuzzy Set Theory and Cellular Learning Automata\",\"authors\":\"Saman Sinaie, A. Ghanizadeh, Emadaldin Mozafari Majd, S. Shamsuddin\",\"doi\":\"10.1109/ICCSA.2009.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a hybrid edge detection method based on fuzzy sets and cellular learning automata is proposed. At first, existing methods of edge detection and their problems are discussed and then a high performance method for edge detection, that can extract edges more precisely by using only fuzzy sets than by other edge detection methods, is suggested. After that the edges improve incredibly by using cellular learning automata. In the end, we compare it with popular edge detection methods such as Sobel and Canny. The proposed method does not need parameter settings as Canny edge detector does, and it can detect edges more smoothly in a shorter amount of time while other edge detectors cannot.\",\"PeriodicalId\":387286,\"journal\":{\"name\":\"2009 International Conference on Computational Science and Its Applications\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Science and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2009.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种基于模糊集和元胞学习自动机的混合边缘检测方法。在分析现有边缘检测方法及其存在问题的基础上,提出了一种仅使用模糊集就能比其他边缘检测方法更精确地提取边缘的高性能边缘检测方法。在那之后,通过使用细胞学习自动机,边缘得到了令人难以置信的改善。最后,将其与Sobel和Canny等常用边缘检测方法进行了比较。该方法不需要像Canny边缘检测器那样设置参数,并且可以在更短的时间内平滑地检测到边缘,而其他边缘检测器则不能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Edge Detection Method Based on Fuzzy Set Theory and Cellular Learning Automata
In this paper, a hybrid edge detection method based on fuzzy sets and cellular learning automata is proposed. At first, existing methods of edge detection and their problems are discussed and then a high performance method for edge detection, that can extract edges more precisely by using only fuzzy sets than by other edge detection methods, is suggested. After that the edges improve incredibly by using cellular learning automata. In the end, we compare it with popular edge detection methods such as Sobel and Canny. The proposed method does not need parameter settings as Canny edge detector does, and it can detect edges more smoothly in a shorter amount of time while other edge detectors cannot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信