Unicyclic家庭的局部不适应斑纹斑纹

A. I. Kristiana, Muhammad Gufronil Halim, R. Adawiyah
{"title":"Unicyclic家庭的局部不适应斑纹斑纹","authors":"A. I. Kristiana, Muhammad Gufronil Halim, R. Adawiyah","doi":"10.20473/conmatha.v4i1.33607","DOIUrl":null,"url":null,"abstract":"The graph in this paper is a simple and connected graph with V(G) is vertex set and  E(G) is edge set. An inklusif local irregularity vertex coloring is defined should be maping l:V(G) à {1,2,…, k} as vertex labeling and wi : V(G) à N is function of inclusive local irregularity vertex coloring, with wi(v) = l(v) + ∑u∈N(v) l(u) in other words, an inclusive local irregularity vertex coloring is to assign a color to the graph with the resulting weight value by adding up the labels of the vertices that are should be neighboring to its own label. The minimum number of colors produced from inclusive local irregularity vertex coloring of graph G is called inclusive chromatic number local irregularity, denoted by Xlisi(G). Should be in this paper, we learn about the inclusive local irregularity vertex coloring and determine the chromatic number on unicyclic graphs.","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Keluarga Graf Unicyclic\",\"authors\":\"A. I. Kristiana, Muhammad Gufronil Halim, R. Adawiyah\",\"doi\":\"10.20473/conmatha.v4i1.33607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graph in this paper is a simple and connected graph with V(G) is vertex set and  E(G) is edge set. An inklusif local irregularity vertex coloring is defined should be maping l:V(G) à {1,2,…, k} as vertex labeling and wi : V(G) à N is function of inclusive local irregularity vertex coloring, with wi(v) = l(v) + ∑u∈N(v) l(u) in other words, an inclusive local irregularity vertex coloring is to assign a color to the graph with the resulting weight value by adding up the labels of the vertices that are should be neighboring to its own label. The minimum number of colors produced from inclusive local irregularity vertex coloring of graph G is called inclusive chromatic number local irregularity, denoted by Xlisi(G). Should be in this paper, we learn about the inclusive local irregularity vertex coloring and determine the chromatic number on unicyclic graphs.\",\"PeriodicalId\":119993,\"journal\":{\"name\":\"Contemporary Mathematics and Applications (ConMathA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics and Applications (ConMathA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20473/conmatha.v4i1.33607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/conmatha.v4i1.33607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的图是一个简单连通图,其中V(G)为顶点集,E(G)为边集。一个inklusif局部不规则顶点着色定义为映射l:V(G) {1,2,…,k}作为顶点标记,而wi:V(G) N是包含局部不规则顶点着色的函数,其中wi(V) = l(V) +∑u∈N(V) l(u)换句话说,包含局部不规则顶点着色是通过将应该与自己的标记相邻的顶点的标记相加,为具有结果权重值的图分配颜色。图G的包含局部不规则顶点着色产生的最小颜色数称为包含色数局部不规则,用Xlisi(G)表示。在本文中,我们学习了包涵局部不规则顶点着色,并确定了单环图上的色数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pewarnaan Titik Ketakteraturan Lokal Inklusif pada Keluarga Graf Unicyclic
The graph in this paper is a simple and connected graph with V(G) is vertex set and  E(G) is edge set. An inklusif local irregularity vertex coloring is defined should be maping l:V(G) à {1,2,…, k} as vertex labeling and wi : V(G) à N is function of inclusive local irregularity vertex coloring, with wi(v) = l(v) + ∑u∈N(v) l(u) in other words, an inclusive local irregularity vertex coloring is to assign a color to the graph with the resulting weight value by adding up the labels of the vertices that are should be neighboring to its own label. The minimum number of colors produced from inclusive local irregularity vertex coloring of graph G is called inclusive chromatic number local irregularity, denoted by Xlisi(G). Should be in this paper, we learn about the inclusive local irregularity vertex coloring and determine the chromatic number on unicyclic graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信