训练大词汇量语音识别器的不确定性

A. Subramanya, C. Bartels, J. Bilmes, Patrick Nguyen
{"title":"训练大词汇量语音识别器的不确定性","authors":"A. Subramanya, C. Bartels, J. Bilmes, Patrick Nguyen","doi":"10.1109/ASRU.2007.4430160","DOIUrl":null,"url":null,"abstract":"We propose a technique for annotating data used to train a speech recognizer. The proposed scheme is based on labeling only a single frame for every word in the training set. We make use of the virtual evidence (VE) framework within a graphical model to take advantage of such data. We apply this approach to a large vocabulary speech recognition task, and show that our VE-based training scheme can improve over the performance of a system trained using sequence labeled data by 2.8% and 2.1% on the dev01 and eva101 sets respectively. Annotating data in the proposed scheme is not significantly slower than sequence labeling. We present timing results showing that training using the proposed approach is about 10 times faster than training using sequence labeled data while using only about 75% of the memory.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Uncertainty in training large vocabulary speech recognizers\",\"authors\":\"A. Subramanya, C. Bartels, J. Bilmes, Patrick Nguyen\",\"doi\":\"10.1109/ASRU.2007.4430160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a technique for annotating data used to train a speech recognizer. The proposed scheme is based on labeling only a single frame for every word in the training set. We make use of the virtual evidence (VE) framework within a graphical model to take advantage of such data. We apply this approach to a large vocabulary speech recognition task, and show that our VE-based training scheme can improve over the performance of a system trained using sequence labeled data by 2.8% and 2.1% on the dev01 and eva101 sets respectively. Annotating data in the proposed scheme is not significantly slower than sequence labeling. We present timing results showing that training using the proposed approach is about 10 times faster than training using sequence labeled data while using only about 75% of the memory.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种用于训练语音识别器的数据注释技术。所提出的方案是基于对训练集中的每个单词只标记单个帧。我们利用图形模型中的虚拟证据(VE)框架来利用这些数据。我们将这种方法应用于一个大词汇量的语音识别任务,并表明我们的基于vee的训练方案在dev01和eva101上分别比使用序列标记数据训练的系统性能提高2.8%和2.1%。在该方案中标注数据的速度并不比序列标注慢。我们给出的时序结果表明,使用该方法的训练速度比使用序列标记数据的训练速度快10倍,而仅使用约75%的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty in training large vocabulary speech recognizers
We propose a technique for annotating data used to train a speech recognizer. The proposed scheme is based on labeling only a single frame for every word in the training set. We make use of the virtual evidence (VE) framework within a graphical model to take advantage of such data. We apply this approach to a large vocabulary speech recognition task, and show that our VE-based training scheme can improve over the performance of a system trained using sequence labeled data by 2.8% and 2.1% on the dev01 and eva101 sets respectively. Annotating data in the proposed scheme is not significantly slower than sequence labeling. We present timing results showing that training using the proposed approach is about 10 times faster than training using sequence labeled data while using only about 75% of the memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信