G. Naziripour, E. Shin, G. Subramanyam, N. Dilley, S. Ramanarhan, G. Farlow, V. Vasiliev, B. Claflin, D. Look
{"title":"V1-xWxO2在金属绝缘子转变温度周围的输运性质","authors":"G. Naziripour, E. Shin, G. Subramanyam, N. Dilley, S. Ramanarhan, G. Farlow, V. Vasiliev, B. Claflin, D. Look","doi":"10.1117/12.2647148","DOIUrl":null,"url":null,"abstract":"The transport properties of W-doped thermochromic V1-xWxO2 (x=0 and 0.0074) thin films prepared by pulsed laser deposition were studied to understand the effect of doping on the electrical properties of these films. Temperature dependent magneto-transport measurements (Hall effect) in magnetic fields up to 9 Tesla were performed on thin film vanadium dioxide (VO2) across the Mott metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at MIT. The Hall mobility varies little across the MIT and remains low at ~ 0.05 cm2 /V sec. The majority carriers are electrons. Magneto-resistance is small and positive. Comparison of the three Hall parameters including carrier concentration, conductivity and mobility between various doping levels on both metallic and insulating state are reported and a model has been proposed. A correlation between carrier concentration and conductivity of VO2 films is observed but doesn’t exist between carrier concentration and mobility.","PeriodicalId":380113,"journal":{"name":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport properties of V1-xWxO2 around the metal insulator transition temperature\",\"authors\":\"G. Naziripour, E. Shin, G. Subramanyam, N. Dilley, S. Ramanarhan, G. Farlow, V. Vasiliev, B. Claflin, D. Look\",\"doi\":\"10.1117/12.2647148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport properties of W-doped thermochromic V1-xWxO2 (x=0 and 0.0074) thin films prepared by pulsed laser deposition were studied to understand the effect of doping on the electrical properties of these films. Temperature dependent magneto-transport measurements (Hall effect) in magnetic fields up to 9 Tesla were performed on thin film vanadium dioxide (VO2) across the Mott metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at MIT. The Hall mobility varies little across the MIT and remains low at ~ 0.05 cm2 /V sec. The majority carriers are electrons. Magneto-resistance is small and positive. Comparison of the three Hall parameters including carrier concentration, conductivity and mobility between various doping levels on both metallic and insulating state are reported and a model has been proposed. A correlation between carrier concentration and conductivity of VO2 films is observed but doesn’t exist between carrier concentration and mobility.\",\"PeriodicalId\":380113,\"journal\":{\"name\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2647148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2647148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transport properties of V1-xWxO2 around the metal insulator transition temperature
The transport properties of W-doped thermochromic V1-xWxO2 (x=0 and 0.0074) thin films prepared by pulsed laser deposition were studied to understand the effect of doping on the electrical properties of these films. Temperature dependent magneto-transport measurements (Hall effect) in magnetic fields up to 9 Tesla were performed on thin film vanadium dioxide (VO2) across the Mott metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at MIT. The Hall mobility varies little across the MIT and remains low at ~ 0.05 cm2 /V sec. The majority carriers are electrons. Magneto-resistance is small and positive. Comparison of the three Hall parameters including carrier concentration, conductivity and mobility between various doping levels on both metallic and insulating state are reported and a model has been proposed. A correlation between carrier concentration and conductivity of VO2 films is observed but doesn’t exist between carrier concentration and mobility.