基于自适应模型的极化SAR图像分类

Dong Li, Yunhua Zhang, Liting Liang, Jiefang Yang, Xiaojin Shi, Xun Wang
{"title":"基于自适应模型的极化SAR图像分类","authors":"Dong Li, Yunhua Zhang, Liting Liang, Jiefang Yang, Xiaojin Shi, Xun Wang","doi":"10.1109/APSAR46974.2019.9048390","DOIUrl":null,"url":null,"abstract":"An adaptive classification is developed as a hybrid of the eigenvector- and model-based decompositions of polarimetric SAR (PolSAR) image. It adopts the canonical models that widely used in model-based target decomposition to obtain an improvement for the well-known $H/\\alpha$ classification. First, a correspondence principle is developed to adaptively select the matched canonical models. The models are parallelly combined in terms of the scattering similarity for a fine description of the scattering mechanism then. Twelve classes are finally achieved with each one carrying a unique symbol to indicate a specific scattering. The classification does not depend on a particular data set, avoids the hard partitioning, and solves the obscures in $H/\\alpha$. Comparison on real PolSAR image with $H/\\alpha$ validates the better discrimination of radar targets.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Model-Based Classification of Polarimetric SAR Image\",\"authors\":\"Dong Li, Yunhua Zhang, Liting Liang, Jiefang Yang, Xiaojin Shi, Xun Wang\",\"doi\":\"10.1109/APSAR46974.2019.9048390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive classification is developed as a hybrid of the eigenvector- and model-based decompositions of polarimetric SAR (PolSAR) image. It adopts the canonical models that widely used in model-based target decomposition to obtain an improvement for the well-known $H/\\\\alpha$ classification. First, a correspondence principle is developed to adaptively select the matched canonical models. The models are parallelly combined in terms of the scattering similarity for a fine description of the scattering mechanism then. Twelve classes are finally achieved with each one carrying a unique symbol to indicate a specific scattering. The classification does not depend on a particular data set, avoids the hard partitioning, and solves the obscures in $H/\\\\alpha$. Comparison on real PolSAR image with $H/\\\\alpha$ validates the better discrimination of radar targets.\",\"PeriodicalId\":377019,\"journal\":{\"name\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR46974.2019.9048390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将基于特征向量和基于模型的极化SAR (PolSAR)图像分解相结合,提出了一种自适应分类方法。它采用了在基于模型的目标分解中广泛使用的规范模型,对众所周知的$H/\alpha$分类方法进行了改进。首先,提出了一种自适应选择匹配规范模型的对应原则。为了更好地描述散射机理,在散射相似度方面对模型进行了并行组合。最终实现了12个类,每个类都带有一个独特的符号来表示特定的散射。该分类不依赖于特定的数据集,避免了硬分区,并解决了$H/\alpha$中的模糊问题。用$H/\alpha$对真实的PolSAR图像进行比较,验证了该算法对雷达目标有较好的识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Model-Based Classification of Polarimetric SAR Image
An adaptive classification is developed as a hybrid of the eigenvector- and model-based decompositions of polarimetric SAR (PolSAR) image. It adopts the canonical models that widely used in model-based target decomposition to obtain an improvement for the well-known $H/\alpha$ classification. First, a correspondence principle is developed to adaptively select the matched canonical models. The models are parallelly combined in terms of the scattering similarity for a fine description of the scattering mechanism then. Twelve classes are finally achieved with each one carrying a unique symbol to indicate a specific scattering. The classification does not depend on a particular data set, avoids the hard partitioning, and solves the obscures in $H/\alpha$. Comparison on real PolSAR image with $H/\alpha$ validates the better discrimination of radar targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信