一类脉冲系统的矢量lyapunov函数稳定性

H. Ríos, L. Hetel, D. Efimov
{"title":"一类脉冲系统的矢量lyapunov函数稳定性","authors":"H. Ríos, L. Hetel, D. Efimov","doi":"10.1109/CDC.2015.7402541","DOIUrl":null,"url":null,"abstract":"This paper contributes to the exponential stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The method relies on a 2D time domain representation. The results are applied to analyze the exponential stability of linear impulsive systems based on LMIs. Some examples illustrate the feasibility of the proposed approach.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Vector lyapunov function based stability for a class of impulsive systems\",\"authors\":\"H. Ríos, L. Hetel, D. Efimov\",\"doi\":\"10.1109/CDC.2015.7402541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contributes to the exponential stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The method relies on a 2D time domain representation. The results are applied to analyze the exponential stability of linear impulsive systems based on LMIs. Some examples illustrate the feasibility of the proposed approach.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7402541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7402541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于向量李雅普诺夫函数及其散度算子,研究了脉冲动力系统的指数稳定性分析。该方法依赖于二维时域表示。将所得结果应用于基于lmi的线性脉冲系统的指数稳定性分析。一些实例说明了所提出方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector lyapunov function based stability for a class of impulsive systems
This paper contributes to the exponential stability analysis for impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The method relies on a 2D time domain representation. The results are applied to analyze the exponential stability of linear impulsive systems based on LMIs. Some examples illustrate the feasibility of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信