基于dnn的景观信息学习自态度估计

Ryota Ozaki, Y. Kuroda
{"title":"基于dnn的景观信息学习自态度估计","authors":"Ryota Ozaki, Y. Kuroda","doi":"10.1109/IEEECONF49454.2021.9382642","DOIUrl":null,"url":null,"abstract":"This paper presents DNN (deep neural network) - based self-attitude estimation by learning landscape information. The network predicts the gravity vector in the camera frame. The input of the network is a camera image, the outputs are a mean vector and a covariance matrix of the gravity. It is trained and validated with a dataset of images and correspond gravity vectors. The dataset is collected in a simulator. Using a simulator breaks the limitation of amount of collecting data with ground truth. The validation showed the network can predict the gravity vector from only a single shot image. It also showed the covariance matrix expresses the uncertainty of the prediction.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DNN-based self-attitude estimation by learning landscape information\",\"authors\":\"Ryota Ozaki, Y. Kuroda\",\"doi\":\"10.1109/IEEECONF49454.2021.9382642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents DNN (deep neural network) - based self-attitude estimation by learning landscape information. The network predicts the gravity vector in the camera frame. The input of the network is a camera image, the outputs are a mean vector and a covariance matrix of the gravity. It is trained and validated with a dataset of images and correspond gravity vectors. The dataset is collected in a simulator. Using a simulator breaks the limitation of amount of collecting data with ground truth. The validation showed the network can predict the gravity vector from only a single shot image. It also showed the covariance matrix expresses the uncertainty of the prediction.\",\"PeriodicalId\":395378,\"journal\":{\"name\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/SICE International Symposium on System Integration (SII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF49454.2021.9382642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于深度神经网络的景观信息自我姿态估计方法。该网络预测相机帧中的重力矢量。该网络的输入是摄像机图像,输出是重力的均值向量和协方差矩阵。使用图像数据集和相应的重力向量对其进行训练和验证。数据集是在模拟器中收集的。模拟器的使用打破了地面真实数据采集量的限制。验证表明,该网络可以仅从单张图像中预测重力矢量。协方差矩阵表达了预测的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNN-based self-attitude estimation by learning landscape information
This paper presents DNN (deep neural network) - based self-attitude estimation by learning landscape information. The network predicts the gravity vector in the camera frame. The input of the network is a camera image, the outputs are a mean vector and a covariance matrix of the gravity. It is trained and validated with a dataset of images and correspond gravity vectors. The dataset is collected in a simulator. Using a simulator breaks the limitation of amount of collecting data with ground truth. The validation showed the network can predict the gravity vector from only a single shot image. It also showed the covariance matrix expresses the uncertainty of the prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信