{"title":"Mg和Zn成分变化对粉末冶金可生物降解Mg-Zn- ca合金表面特性和抗弯强度的影响","authors":"Yuliana Simons, O. Sutresman, H. Arsyad","doi":"10.25042/epi-ije.082022.08","DOIUrl":null,"url":null,"abstract":"This study aims to determine the Mg-Zn-Ca alloy's surface characteristics and flexural strength using powder metallurgy methods. The Mg-Zn-Ca alloy was prepared by powder metallurgy method with three composition variations (89Mg-10Zn-1Ca, 93Mg-6Zn-1Ca and 97Mg-2Zn-1Ca). The Mg-Zn-Ca powder alloy was mixed with the dry milling process for 60 minutes. After mixing, the compaction process is carried out with a load of 200 MPa. Then, the sintering process was carried out at a temperature of 500 ℃ and held for 3 hours with a furnace fed with argon gas. The sintering results were characterized by the microstructure of the Mg-Zn-Ca alloy using SEM and XRD. After that, it was carried out to test the flexural strength of the Mg-Zn-Ca alloy. SEM results obtained that the 89Mg-10Zn-1Ca alloy sample has less porosity and a smaller pore diameter compared to the 93Mg-6Zn-1Ca alloy sample and the 97Mg-2Zn-1Ca alloy sample, which has more porosity and has a smaller diameter. Bigger pore. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak that occurred in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa","PeriodicalId":387754,"journal":{"name":"EPI International Journal of Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mg and Zn Composition Variations on Surface Characteristics and Flexural Strength of Biodegradable Mg-Zn-Ca Alloys by Powder Metallurgy Method\",\"authors\":\"Yuliana Simons, O. Sutresman, H. Arsyad\",\"doi\":\"10.25042/epi-ije.082022.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to determine the Mg-Zn-Ca alloy's surface characteristics and flexural strength using powder metallurgy methods. The Mg-Zn-Ca alloy was prepared by powder metallurgy method with three composition variations (89Mg-10Zn-1Ca, 93Mg-6Zn-1Ca and 97Mg-2Zn-1Ca). The Mg-Zn-Ca powder alloy was mixed with the dry milling process for 60 minutes. After mixing, the compaction process is carried out with a load of 200 MPa. Then, the sintering process was carried out at a temperature of 500 ℃ and held for 3 hours with a furnace fed with argon gas. The sintering results were characterized by the microstructure of the Mg-Zn-Ca alloy using SEM and XRD. After that, it was carried out to test the flexural strength of the Mg-Zn-Ca alloy. SEM results obtained that the 89Mg-10Zn-1Ca alloy sample has less porosity and a smaller pore diameter compared to the 93Mg-6Zn-1Ca alloy sample and the 97Mg-2Zn-1Ca alloy sample, which has more porosity and has a smaller diameter. Bigger pore. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak that occurred in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa\",\"PeriodicalId\":387754,\"journal\":{\"name\":\"EPI International Journal of Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPI International Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25042/epi-ije.082022.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPI International Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25042/epi-ije.082022.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Mg and Zn Composition Variations on Surface Characteristics and Flexural Strength of Biodegradable Mg-Zn-Ca Alloys by Powder Metallurgy Method
This study aims to determine the Mg-Zn-Ca alloy's surface characteristics and flexural strength using powder metallurgy methods. The Mg-Zn-Ca alloy was prepared by powder metallurgy method with three composition variations (89Mg-10Zn-1Ca, 93Mg-6Zn-1Ca and 97Mg-2Zn-1Ca). The Mg-Zn-Ca powder alloy was mixed with the dry milling process for 60 minutes. After mixing, the compaction process is carried out with a load of 200 MPa. Then, the sintering process was carried out at a temperature of 500 ℃ and held for 3 hours with a furnace fed with argon gas. The sintering results were characterized by the microstructure of the Mg-Zn-Ca alloy using SEM and XRD. After that, it was carried out to test the flexural strength of the Mg-Zn-Ca alloy. SEM results obtained that the 89Mg-10Zn-1Ca alloy sample has less porosity and a smaller pore diameter compared to the 93Mg-6Zn-1Ca alloy sample and the 97Mg-2Zn-1Ca alloy sample, which has more porosity and has a smaller diameter. Bigger pore. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak that occurred in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa. The results from XRD had the highest peak in the 89Mg-10Zn-1Ca alloy sample, seen from a crystalline spectrum of 82.4%. The results of the bending test, the most optimal flexural strength occurred in the 89Mg-10Zn-1Ca alloy sample, which was 0.579 Mpa