亚马逊的机器学习

R. Herbrich
{"title":"亚马逊的机器学习","authors":"R. Herbrich","doi":"10.1145/3018661.3022764","DOIUrl":null,"url":null,"abstract":"In this talk I will give an introduction into the field of machine learning and discuss why it is a crucial technology for Amazon. Machine learning is the science of automatically extracting patterns from data in order to make automated predictions of future data. One way to differentiate machine learning tasks is by the following two factors: (1) How much noise is contained in the data? and (2) How far into the future is the prediction task? The former presents a limit to the learnability of task --- regardless which learning algorithm is used --- whereas the latter has a crucial implication on the representation of the predictions: while most tasks in search and advertising typically only forecast minutes into the future, tasks in e-commerce can require predictions up to a year into the future. The further the forecast horizon, the more important it is to take account of uncertainty in both the learning algorithm and the representation of the predictions. I will discuss which learning frameworks are best suited for the various scenarios, that is, short-term predictions with little noise vs. long-term predictions with lots of noise, and present some ideas to combine representation learning with probabilistic methods. In the second half of the talk, I will give an overview of the applications of machine learning at Amazon ranging from demand forecasting, machine translation to automation of computer vision tasks and robotics. I will also discuss the importance of tools for data scientist and share learnings on bringing machine learning algorithms into products.","PeriodicalId":344017,"journal":{"name":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Machine Learning at Amazon\",\"authors\":\"R. Herbrich\",\"doi\":\"10.1145/3018661.3022764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk I will give an introduction into the field of machine learning and discuss why it is a crucial technology for Amazon. Machine learning is the science of automatically extracting patterns from data in order to make automated predictions of future data. One way to differentiate machine learning tasks is by the following two factors: (1) How much noise is contained in the data? and (2) How far into the future is the prediction task? The former presents a limit to the learnability of task --- regardless which learning algorithm is used --- whereas the latter has a crucial implication on the representation of the predictions: while most tasks in search and advertising typically only forecast minutes into the future, tasks in e-commerce can require predictions up to a year into the future. The further the forecast horizon, the more important it is to take account of uncertainty in both the learning algorithm and the representation of the predictions. I will discuss which learning frameworks are best suited for the various scenarios, that is, short-term predictions with little noise vs. long-term predictions with lots of noise, and present some ideas to combine representation learning with probabilistic methods. In the second half of the talk, I will give an overview of the applications of machine learning at Amazon ranging from demand forecasting, machine translation to automation of computer vision tasks and robotics. I will also discuss the importance of tools for data scientist and share learnings on bringing machine learning algorithms into products.\",\"PeriodicalId\":344017,\"journal\":{\"name\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3018661.3022764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018661.3022764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在这次演讲中,我将介绍机器学习领域,并讨论为什么它对亚马逊来说是一项关键技术。机器学习是一门自动从数据中提取模式以自动预测未来数据的科学。区分机器学习任务的一种方法是通过以下两个因素:(1)数据中包含多少噪声?(2)预测任务距离未来有多远?前者限制了任务的可学习性——无论使用哪种学习算法——而后者对预测的表示具有关键意义:搜索和广告中的大多数任务通常只预测未来几分钟的时间,而电子商务中的任务可能需要预测未来长达一年的时间。预测范围越远,在学习算法和预测表示中考虑不确定性就越重要。我将讨论哪些学习框架最适合各种场景,即噪声小的短期预测与噪声大的长期预测,并提出一些将表示学习与概率方法相结合的想法。在演讲的后半部分,我将概述机器学习在亚马逊的应用,从需求预测、机器翻译到计算机视觉任务的自动化和机器人。我还将讨论工具对数据科学家的重要性,并分享将机器学习算法引入产品的经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning at Amazon
In this talk I will give an introduction into the field of machine learning and discuss why it is a crucial technology for Amazon. Machine learning is the science of automatically extracting patterns from data in order to make automated predictions of future data. One way to differentiate machine learning tasks is by the following two factors: (1) How much noise is contained in the data? and (2) How far into the future is the prediction task? The former presents a limit to the learnability of task --- regardless which learning algorithm is used --- whereas the latter has a crucial implication on the representation of the predictions: while most tasks in search and advertising typically only forecast minutes into the future, tasks in e-commerce can require predictions up to a year into the future. The further the forecast horizon, the more important it is to take account of uncertainty in both the learning algorithm and the representation of the predictions. I will discuss which learning frameworks are best suited for the various scenarios, that is, short-term predictions with little noise vs. long-term predictions with lots of noise, and present some ideas to combine representation learning with probabilistic methods. In the second half of the talk, I will give an overview of the applications of machine learning at Amazon ranging from demand forecasting, machine translation to automation of computer vision tasks and robotics. I will also discuss the importance of tools for data scientist and share learnings on bringing machine learning algorithms into products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信