{"title":"利用Twitter“大数据”进行自动情绪识别","authors":"Wenbo Wang, Lu Chen, K. Thirunarayan, A. Sheth","doi":"10.1109/SocialCom-PASSAT.2012.119","DOIUrl":null,"url":null,"abstract":"User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of \"emotional situations\" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.","PeriodicalId":129526,"journal":{"name":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"354","resultStr":"{\"title\":\"Harnessing Twitter \\\"Big Data\\\" for Automatic Emotion Identification\",\"authors\":\"Wenbo Wang, Lu Chen, K. Thirunarayan, A. Sheth\",\"doi\":\"10.1109/SocialCom-PASSAT.2012.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of \\\"emotional situations\\\" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.\",\"PeriodicalId\":129526,\"journal\":{\"name\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"354\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom-PASSAT.2012.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom-PASSAT.2012.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing Twitter "Big Data" for Automatic Emotion Identification
User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of "emotional situations" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.