利用Twitter“大数据”进行自动情绪识别

Wenbo Wang, Lu Chen, K. Thirunarayan, A. Sheth
{"title":"利用Twitter“大数据”进行自动情绪识别","authors":"Wenbo Wang, Lu Chen, K. Thirunarayan, A. Sheth","doi":"10.1109/SocialCom-PASSAT.2012.119","DOIUrl":null,"url":null,"abstract":"User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of \"emotional situations\" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.","PeriodicalId":129526,"journal":{"name":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"354","resultStr":"{\"title\":\"Harnessing Twitter \\\"Big Data\\\" for Automatic Emotion Identification\",\"authors\":\"Wenbo Wang, Lu Chen, K. Thirunarayan, A. Sheth\",\"doi\":\"10.1109/SocialCom-PASSAT.2012.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of \\\"emotional situations\\\" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.\",\"PeriodicalId\":129526,\"journal\":{\"name\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"354\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom-PASSAT.2012.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom-PASSAT.2012.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 354

摘要

Twitter上的用户生成内容(每天产生3.4亿条推文的惊人速度)为收集人们的情绪提供了丰富的来源,这对于更深入地了解人们的行为和行动是必要的。现有的情绪识别研究缺乏对“情绪情境”的全面覆盖,因为它们使用的训练数据集相对较小。为了克服这个瓶颈,我们通过利用推文中可用的与情绪相关的哈希标签,自动创建了一个大型的情感标签数据集(约250万条推文)。我们应用了两种不同的机器学习算法进行情绪识别,研究了各种特征组合的有效性以及训练数据大小对情绪识别任务的影响。我们的实验表明,组合单字、大字、情绪/情绪承载词和词性信息对于收集情绪是最有效的。当训练数据包含约200万条tweet时,准确率达到最高(65.57%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing Twitter "Big Data" for Automatic Emotion Identification
User generated content on Twitter (produced at an enormous rate of 340 million tweets per day) provides a rich source for gleaning people's emotions, which is necessary for deeper understanding of people's behaviors and actions. Extant studies on emotion identification lack comprehensive coverage of "emotional situations" because they use relatively small training datasets. To overcome this bottleneck, we have automatically created a large emotion-labeled dataset (of about 2.5 million tweets) by harnessing emotion-related hash tags available in the tweets. We have applied two different machine learning algorithms for emotion identification, to study the effectiveness of various feature combinations as well as the effect of the size of the training data on the emotion identification task. Our experiments demonstrate that a combination of unigrams, big rams, sentiment/emotion-bearing words, and parts-of-speech information is most effective for gleaning emotions. The highest accuracy (65.57%) is achieved with a training data containing about 2 million tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信