基于Xgboost的SMAP和AMSR2联合改进冻融初起反演:以阿拉斯加为例

Wen Zhong, Q. Yuan, Tingting Liu, Linwei Yue
{"title":"基于Xgboost的SMAP和AMSR2联合改进冻融初起反演:以阿拉斯加为例","authors":"Wen Zhong, Q. Yuan, Tingting Liu, Linwei Yue","doi":"10.1109/IGARSS46834.2022.9884884","DOIUrl":null,"url":null,"abstract":"Passive microwave remote sensing can effectively capture the near-surface soil freeze/thaw onsets. Accurately understanding the transition of permafrost freeze/thaw state is helpful for us to respond to climate change in time. In order to improve the retrieval accuracy of freeze/thaw onsets, we propose an XGBoost modeling method that combines SMAP and AMSR2 for freeze/thaw onsets detection. We conducted experiments using data covering Alaska from 2015 to 2020 to demonstrate the effectiveness of our method. The proposed model was applied to the whole study area to obtain the spatial and temporal distribution of freezing periods. During the study period, the shortening of the freezing period has been most evident in 2018–2019. The variation of the freezing period is related to climate anomalies.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Freeze/Thaw Onsets Retrieval by Combining SMAP and AMSR2 Based on Xgboost: a Case Study in Alaska\",\"authors\":\"Wen Zhong, Q. Yuan, Tingting Liu, Linwei Yue\",\"doi\":\"10.1109/IGARSS46834.2022.9884884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Passive microwave remote sensing can effectively capture the near-surface soil freeze/thaw onsets. Accurately understanding the transition of permafrost freeze/thaw state is helpful for us to respond to climate change in time. In order to improve the retrieval accuracy of freeze/thaw onsets, we propose an XGBoost modeling method that combines SMAP and AMSR2 for freeze/thaw onsets detection. We conducted experiments using data covering Alaska from 2015 to 2020 to demonstrate the effectiveness of our method. The proposed model was applied to the whole study area to obtain the spatial and temporal distribution of freezing periods. During the study period, the shortening of the freezing period has been most evident in 2018–2019. The variation of the freezing period is related to climate anomalies.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9884884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

被动微波遥感可以有效地捕捉近地表土壤冻融的前兆。准确认识多年冻土冻融状态的转变有助于我们及时应对气候变化。为了提高冻结/解冻启动的检索精度,我们提出了一种结合SMAP和AMSR2的XGBoost建模方法用于冻结/解冻启动检测。我们利用阿拉斯加2015年至2020年的数据进行了实验,以证明我们的方法的有效性。将该模型应用于整个研究区,得到冻结期的时空分布。在研究期内,冻结期缩短在2018-2019年最为明显。冻结期的变化与气候异常有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Freeze/Thaw Onsets Retrieval by Combining SMAP and AMSR2 Based on Xgboost: a Case Study in Alaska
Passive microwave remote sensing can effectively capture the near-surface soil freeze/thaw onsets. Accurately understanding the transition of permafrost freeze/thaw state is helpful for us to respond to climate change in time. In order to improve the retrieval accuracy of freeze/thaw onsets, we propose an XGBoost modeling method that combines SMAP and AMSR2 for freeze/thaw onsets detection. We conducted experiments using data covering Alaska from 2015 to 2020 to demonstrate the effectiveness of our method. The proposed model was applied to the whole study area to obtain the spatial and temporal distribution of freezing periods. During the study period, the shortening of the freezing period has been most evident in 2018–2019. The variation of the freezing period is related to climate anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信