面向sl的上同理论

A. Ananyevskiy
{"title":"面向sl的上同理论","authors":"A. Ananyevskiy","doi":"10.1090/conm/745/15020","DOIUrl":null,"url":null,"abstract":"We show that a representable motivic cohomology theory admits a unique normalized SL^c-orientation if the zeroth cohomology presheaf is a Zariski sheaf. We also construct Thom isomorphisms in SL-oriented cohomology for SL^c-bundles and obtain new results on the \\eta-torsion characteristic classes, in particular, we prove that the Euler class of an oriented bundle admitting a (possibly non-orientable) odd rank subbundle is annihilated by the Hopf element.","PeriodicalId":246899,"journal":{"name":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"SL-oriented cohomology theories\",\"authors\":\"A. Ananyevskiy\",\"doi\":\"10.1090/conm/745/15020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a representable motivic cohomology theory admits a unique normalized SL^c-orientation if the zeroth cohomology presheaf is a Zariski sheaf. We also construct Thom isomorphisms in SL-oriented cohomology for SL^c-bundles and obtain new results on the \\\\eta-torsion characteristic classes, in particular, we prove that the Euler class of an oriented bundle admitting a (possibly non-orientable) odd rank subbundle is annihilated by the Hopf element.\",\"PeriodicalId\":246899,\"journal\":{\"name\":\"Motivic Homotopy Theory and Refined\\n Enumerative Geometry\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motivic Homotopy Theory and Refined\\n Enumerative Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/745/15020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motivic Homotopy Theory and Refined\n Enumerative Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/745/15020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们证明了一个可表示的动机上同调理论允许唯一的归一化SL^c取向,如果第零上同调预轴是Zariski轴。我们还构造了SL^c-束在SL-定向上同构中的Thom同构,并得到了关于\ -扭转特征类的新结果,特别是证明了含有奇数秩子束(可能是不可定向的)的定向束的Euler类被Hopf元湮灭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SL-oriented cohomology theories
We show that a representable motivic cohomology theory admits a unique normalized SL^c-orientation if the zeroth cohomology presheaf is a Zariski sheaf. We also construct Thom isomorphisms in SL-oriented cohomology for SL^c-bundles and obtain new results on the \eta-torsion characteristic classes, in particular, we prove that the Euler class of an oriented bundle admitting a (possibly non-orientable) odd rank subbundle is annihilated by the Hopf element.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信