聚乳酸过程中数据维数的降维

Nurmalitasari, Zalizah Awang Long, Mohammad Faizuddin Mohd Noor
{"title":"聚乳酸过程中数据维数的降维","authors":"Nurmalitasari, Zalizah Awang Long, Mohammad Faizuddin Mohd Noor","doi":"10.1109/IMCOM51814.2021.9377391","DOIUrl":null,"url":null,"abstract":"Reducing dimensional data is an essential step before data analysis in Predictive Learning Analytics (PLA) for student dropouts. It was reducing dimensions in the study using the CATPCA method. CATPCA has advantages in reducing data dimensions on measurement variables of various levels such as nominal, ordinal, and numerical, which may not have a linear correlation between one variable and another, such as variables related to the PLA data processing. This study's results are five factors that store important information about the input variables, namely social and economic, academic program, institutional, academic performance, and personal. The conclusions of this study will be beneficial for further research in the PLA process","PeriodicalId":275121,"journal":{"name":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduction of Data Dimensions in The PLA Process\",\"authors\":\"Nurmalitasari, Zalizah Awang Long, Mohammad Faizuddin Mohd Noor\",\"doi\":\"10.1109/IMCOM51814.2021.9377391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing dimensional data is an essential step before data analysis in Predictive Learning Analytics (PLA) for student dropouts. It was reducing dimensions in the study using the CATPCA method. CATPCA has advantages in reducing data dimensions on measurement variables of various levels such as nominal, ordinal, and numerical, which may not have a linear correlation between one variable and another, such as variables related to the PLA data processing. This study's results are five factors that store important information about the input variables, namely social and economic, academic program, institutional, academic performance, and personal. The conclusions of this study will be beneficial for further research in the PLA process\",\"PeriodicalId\":275121,\"journal\":{\"name\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM51814.2021.9377391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM51814.2021.9377391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在预测学习分析(PLA)中,对辍学学生进行数据分析之前,降维数据是必不可少的一步。使用CATPCA方法对研究进行降维。CATPCA在降低标称、序数和数值等不同层次的测量变量的数据维数方面具有优势,这些变量之间可能没有线性相关性,例如与PLA数据处理相关的变量。本研究的结果是存储有关输入变量的重要信息的五个因素,即社会和经济,学术计划,机构,学习成绩和个人。本研究的结论对进一步研究聚乳酸过程具有一定的指导意义
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of Data Dimensions in The PLA Process
Reducing dimensional data is an essential step before data analysis in Predictive Learning Analytics (PLA) for student dropouts. It was reducing dimensions in the study using the CATPCA method. CATPCA has advantages in reducing data dimensions on measurement variables of various levels such as nominal, ordinal, and numerical, which may not have a linear correlation between one variable and another, such as variables related to the PLA data processing. This study's results are five factors that store important information about the input variables, namely social and economic, academic program, institutional, academic performance, and personal. The conclusions of this study will be beneficial for further research in the PLA process
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信