用人工神经网络估计改进型f类功率放大器的输出功率和PAE

M. Jamshidi, S. Roshani, J. Talla, S. Roshani
{"title":"用人工神经网络估计改进型f类功率放大器的输出功率和PAE","authors":"M. Jamshidi, S. Roshani, J. Talla, S. Roshani","doi":"10.23919/AE49394.2020.9232787","DOIUrl":null,"url":null,"abstract":"In this paper, an efficient Class-F power amplifier (PA) is designed, simulated and modeled. This type of amplifier has nonlinear behaviors and uses tuning and controlling harmonics as the most important mechanism to increase efficiency. Feedforward artificial neural network (ANN) model is proposed to predict and estimate the nonlinear output of the power amplifier. The designed amplifier operates at 900 MHz, with 18 dB gain and 70 %Power-Added Efficiency (PAE). In the design process, the artificial neural network model is used to predict PAE and output power parameters as a function of input power, drain voltage and gate voltage of the applied transistor (DC Biasing voltages). The obtained mean relative errors (MREs) are less than 0.03% and 0.09% for the predicted output power and PAE parameters.","PeriodicalId":294648,"journal":{"name":"2020 International Conference on Applied Electronics (AE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Using an ANN Approach to Estimate Output Power and PAE of A Modified Class-F Power Amplifier\",\"authors\":\"M. Jamshidi, S. Roshani, J. Talla, S. Roshani\",\"doi\":\"10.23919/AE49394.2020.9232787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an efficient Class-F power amplifier (PA) is designed, simulated and modeled. This type of amplifier has nonlinear behaviors and uses tuning and controlling harmonics as the most important mechanism to increase efficiency. Feedforward artificial neural network (ANN) model is proposed to predict and estimate the nonlinear output of the power amplifier. The designed amplifier operates at 900 MHz, with 18 dB gain and 70 %Power-Added Efficiency (PAE). In the design process, the artificial neural network model is used to predict PAE and output power parameters as a function of input power, drain voltage and gate voltage of the applied transistor (DC Biasing voltages). The obtained mean relative errors (MREs) are less than 0.03% and 0.09% for the predicted output power and PAE parameters.\",\"PeriodicalId\":294648,\"journal\":{\"name\":\"2020 International Conference on Applied Electronics (AE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Applied Electronics (AE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AE49394.2020.9232787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AE49394.2020.9232787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文设计了一种高效的f类功率放大器,并对其进行了仿真和建模。这类放大器具有非线性特性,并以调谐和控制谐波作为提高效率的最重要机制。提出了前馈人工神经网络(ANN)模型来预测和估计功率放大器的非线性输出。设计的放大器工作频率为900 MHz,增益为18 dB,功率附加效率(PAE)为70%。在设计过程中,利用人工神经网络模型预测PAE和输出功率参数作为输入功率、外加晶体管漏极电压和栅极电压(直流偏置电压)的函数。预测输出功率和PAE参数的平均相对误差(MREs)分别小于0.03%和0.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using an ANN Approach to Estimate Output Power and PAE of A Modified Class-F Power Amplifier
In this paper, an efficient Class-F power amplifier (PA) is designed, simulated and modeled. This type of amplifier has nonlinear behaviors and uses tuning and controlling harmonics as the most important mechanism to increase efficiency. Feedforward artificial neural network (ANN) model is proposed to predict and estimate the nonlinear output of the power amplifier. The designed amplifier operates at 900 MHz, with 18 dB gain and 70 %Power-Added Efficiency (PAE). In the design process, the artificial neural network model is used to predict PAE and output power parameters as a function of input power, drain voltage and gate voltage of the applied transistor (DC Biasing voltages). The obtained mean relative errors (MREs) are less than 0.03% and 0.09% for the predicted output power and PAE parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信