IADVS:交互式应用程序的按需性能

Mingsong Bi, Igor Crk, C. Gniady
{"title":"IADVS:交互式应用程序的按需性能","authors":"Mingsong Bi, Igor Crk, C. Gniady","doi":"10.1109/HPCA.2010.5416649","DOIUrl":null,"url":null,"abstract":"Increasingly power-hungry processors have reinforced the need for aggressive power management. Dynamic voltage scaling has become a common design consideration allowing for energy efficient CPUs by matching CPU performance with the computational demand of running processes. In this paper, we propose Interaction-Aware Dynamic Voltage Scaling (IADVS), a novel fine-grained approach to managing CPU power during interactive workloads, which account for the bulk of the processing demand on modern mobile or desktop systems. IADVS is built upon a transparent, fine-grained interaction capture system. Able to track CPU usage for each user interface event, the proposed system sets the CPU performance level to the one that best matches the predicted CPU demand. Compared to the state-of-the-art approach of user-interaction-based CPU energy management, we show that IADVS improves prediction accuracy by 37%, reduces processing delays by 17%, and reduces energy consumed of the CPU by as much as 4%. The proposed design is evaluated with both a detailed trace-based simulation as well as implementation on a real system, verifying the simulation findings.","PeriodicalId":368621,"journal":{"name":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"IADVS: On-demand performance for interactive applications\",\"authors\":\"Mingsong Bi, Igor Crk, C. Gniady\",\"doi\":\"10.1109/HPCA.2010.5416649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasingly power-hungry processors have reinforced the need for aggressive power management. Dynamic voltage scaling has become a common design consideration allowing for energy efficient CPUs by matching CPU performance with the computational demand of running processes. In this paper, we propose Interaction-Aware Dynamic Voltage Scaling (IADVS), a novel fine-grained approach to managing CPU power during interactive workloads, which account for the bulk of the processing demand on modern mobile or desktop systems. IADVS is built upon a transparent, fine-grained interaction capture system. Able to track CPU usage for each user interface event, the proposed system sets the CPU performance level to the one that best matches the predicted CPU demand. Compared to the state-of-the-art approach of user-interaction-based CPU energy management, we show that IADVS improves prediction accuracy by 37%, reduces processing delays by 17%, and reduces energy consumed of the CPU by as much as 4%. The proposed design is evaluated with both a detailed trace-based simulation as well as implementation on a real system, verifying the simulation findings.\",\"PeriodicalId\":368621,\"journal\":{\"name\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2010.5416649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HPCA - 16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2010.5416649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

越来越耗电的处理器加强了对积极的电源管理的需求。动态电压缩放已经成为一种常见的设计考虑,通过将CPU性能与运行进程的计算需求相匹配来实现高能效CPU。在本文中,我们提出了交互式感知动态电压缩放(IADVS),这是一种新颖的细粒度方法,用于管理交互式工作负载期间的CPU功率,交互式工作负载占现代移动或桌面系统处理需求的大部分。IADVS建立在透明的、细粒度的交互捕获系统之上。能够跟踪每个用户界面事件的CPU使用情况,建议的系统将CPU性能级别设置为与预测的CPU需求最匹配的级别。与基于用户交互的最先进的CPU能量管理方法相比,我们表明IADVS将预测精度提高了37%,将处理延迟降低了17%,并将CPU能耗降低了4%。通过详细的基于跟踪的仿真以及在实际系统上的实现对所提出的设计进行了评估,验证了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IADVS: On-demand performance for interactive applications
Increasingly power-hungry processors have reinforced the need for aggressive power management. Dynamic voltage scaling has become a common design consideration allowing for energy efficient CPUs by matching CPU performance with the computational demand of running processes. In this paper, we propose Interaction-Aware Dynamic Voltage Scaling (IADVS), a novel fine-grained approach to managing CPU power during interactive workloads, which account for the bulk of the processing demand on modern mobile or desktop systems. IADVS is built upon a transparent, fine-grained interaction capture system. Able to track CPU usage for each user interface event, the proposed system sets the CPU performance level to the one that best matches the predicted CPU demand. Compared to the state-of-the-art approach of user-interaction-based CPU energy management, we show that IADVS improves prediction accuracy by 37%, reduces processing delays by 17%, and reduces energy consumed of the CPU by as much as 4%. The proposed design is evaluated with both a detailed trace-based simulation as well as implementation on a real system, verifying the simulation findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信