云基础架构代码中气味的语义检测

I. Kumara, Zoe Vasileiou, G. Meditskos, D. Tamburri, W. Heuvel, A. Karakostas, S. Vrochidis, Y. Kompatsiaris
{"title":"云基础架构代码中气味的语义检测","authors":"I. Kumara, Zoe Vasileiou, G. Meditskos, D. Tamburri, W. Heuvel, A. Karakostas, S. Vrochidis, Y. Kompatsiaris","doi":"10.1145/3405962.3405979","DOIUrl":null,"url":null,"abstract":"Automated deployment and management of Cloud applications relies on descriptions of their deployment topologies, often referred to as Infrastructure Code. As the complexity of applications and their deployment models increases, developers inadvertently introduce software smells to such code specifications, for instance, violations of good coding practices, modular structure, and more. This paper presents a knowledge-driven approach enabling developers to identify the aforementioned smells in deployment descriptions. We detect smells with SPARQL-based rules over pattern-based OWL 2 knowledge graphs capturing deployment models. We show the feasibility of our approach with a prototype and three case studies.","PeriodicalId":247414,"journal":{"name":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Towards Semantic Detection of Smells in Cloud Infrastructure Code\",\"authors\":\"I. Kumara, Zoe Vasileiou, G. Meditskos, D. Tamburri, W. Heuvel, A. Karakostas, S. Vrochidis, Y. Kompatsiaris\",\"doi\":\"10.1145/3405962.3405979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated deployment and management of Cloud applications relies on descriptions of their deployment topologies, often referred to as Infrastructure Code. As the complexity of applications and their deployment models increases, developers inadvertently introduce software smells to such code specifications, for instance, violations of good coding practices, modular structure, and more. This paper presents a knowledge-driven approach enabling developers to identify the aforementioned smells in deployment descriptions. We detect smells with SPARQL-based rules over pattern-based OWL 2 knowledge graphs capturing deployment models. We show the feasibility of our approach with a prototype and three case studies.\",\"PeriodicalId\":247414,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405962.3405979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405962.3405979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

云应用程序的自动部署和管理依赖于其部署拓扑的描述,通常称为基础设施代码。随着应用程序及其部署模型的复杂性的增加,开发人员不经意地将软件气味引入这样的代码规范,例如,违反良好的编码实践、模块化结构等等。本文提出了一种知识驱动的方法,使开发人员能够在部署描述中识别上述气味。我们使用基于sparql的规则检测气味,而不是基于模式的捕获部署模型的owl2知识图。我们通过一个原型和三个案例研究来展示我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Semantic Detection of Smells in Cloud Infrastructure Code
Automated deployment and management of Cloud applications relies on descriptions of their deployment topologies, often referred to as Infrastructure Code. As the complexity of applications and their deployment models increases, developers inadvertently introduce software smells to such code specifications, for instance, violations of good coding practices, modular structure, and more. This paper presents a knowledge-driven approach enabling developers to identify the aforementioned smells in deployment descriptions. We detect smells with SPARQL-based rules over pattern-based OWL 2 knowledge graphs capturing deployment models. We show the feasibility of our approach with a prototype and three case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信