基于TLS EXIN神经元的同步磁阻电机无传感器控制

Yong-Chao Liu, S. Laghrouche, A. N'Diaye, Siwan Narayan, G. Cirrincione, M. Cirrincione
{"title":"基于TLS EXIN神经元的同步磁阻电机无传感器控制","authors":"Yong-Chao Liu, S. Laghrouche, A. N'Diaye, Siwan Narayan, G. Cirrincione, M. Cirrincione","doi":"10.1109/IEMDC.2019.8785335","DOIUrl":null,"url":null,"abstract":"This paper proposes a rotor speed and position estimation scheme for the synchronous reluctance motor (SynRM) drive system based on its active flux model in the stator reference frame and the total least squares (TLS) EXIN neuron. Firstly, the active flux model of the SynRM in the stator reference frame is reconstructed to the overdetermined matrix equations. On the basis of that, the estimation of the rotor speed of the SynRM is transferred into solving a TLS problem. The TLS EXIN neuron, which is a recursive TLS algorithm, is used to solve this problem online to extract the rotor speed. The estimated rotor position is obtained from the estimated rotor speed based on the integrator. The feasibility and effectiveness of the proposed rotor speed estimation scheme have been verified by the simulation results.","PeriodicalId":378634,"journal":{"name":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensorless Control of Synchronous Reluctance Motor Drives Based on the TLS EXIN Neuron\",\"authors\":\"Yong-Chao Liu, S. Laghrouche, A. N'Diaye, Siwan Narayan, G. Cirrincione, M. Cirrincione\",\"doi\":\"10.1109/IEMDC.2019.8785335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a rotor speed and position estimation scheme for the synchronous reluctance motor (SynRM) drive system based on its active flux model in the stator reference frame and the total least squares (TLS) EXIN neuron. Firstly, the active flux model of the SynRM in the stator reference frame is reconstructed to the overdetermined matrix equations. On the basis of that, the estimation of the rotor speed of the SynRM is transferred into solving a TLS problem. The TLS EXIN neuron, which is a recursive TLS algorithm, is used to solve this problem online to extract the rotor speed. The estimated rotor position is obtained from the estimated rotor speed based on the integrator. The feasibility and effectiveness of the proposed rotor speed estimation scheme have been verified by the simulation results.\",\"PeriodicalId\":378634,\"journal\":{\"name\":\"2019 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2019.8785335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2019.8785335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于同步磁阻电机定子参照系有源磁链模型和总最小二乘(TLS) EXIN神经元的同步磁阻电机驱动系统转子转速和位置估计方案。首先,将定子参照系中SynRM的有源磁链模型重构为过定矩阵方程;在此基础上,将SynRM转子转速的估计问题转化为TLS问题的求解。利用递归TLS算法中的TLS EXIN神经元在线求解转子转速提取问题。基于积分器的转子转速估计得到转子位置估计。仿真结果验证了所提转子转速估计方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensorless Control of Synchronous Reluctance Motor Drives Based on the TLS EXIN Neuron
This paper proposes a rotor speed and position estimation scheme for the synchronous reluctance motor (SynRM) drive system based on its active flux model in the stator reference frame and the total least squares (TLS) EXIN neuron. Firstly, the active flux model of the SynRM in the stator reference frame is reconstructed to the overdetermined matrix equations. On the basis of that, the estimation of the rotor speed of the SynRM is transferred into solving a TLS problem. The TLS EXIN neuron, which is a recursive TLS algorithm, is used to solve this problem online to extract the rotor speed. The estimated rotor position is obtained from the estimated rotor speed based on the integrator. The feasibility and effectiveness of the proposed rotor speed estimation scheme have been verified by the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信