基于mmospa的平面天线阵到达方向估计

M. Baum, P. Willett, U. Hanebeck
{"title":"基于mmospa的平面天线阵到达方向估计","authors":"M. Baum, P. Willett, U. Hanebeck","doi":"10.1109/SAM.2014.6882377","DOIUrl":null,"url":null,"abstract":"This work is concerned with direction-of-arrival (DOA) estimation of narrowband signals from multiple targets using a planar antenna array. We illustrate the shortcomings of Maximum Likelihood (ML), Maximum a Posteriori (MAP), and Minimum Mean Squared Error (MMSE) estimation, issues that can be attributed to the symmetry in the likelihood function that must exist when there is no information about labeling of targets. We proffer the recently introduced concept of Minimum Mean OSPA (MMOSPA) estimation that is based on the optimal sub-pattern assignment (OSPA) metric for sets and hence inherently incorporates symmetric likelihood functions.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"MMOSPA-based direction-of-arrival estimation for planar antenna arrays\",\"authors\":\"M. Baum, P. Willett, U. Hanebeck\",\"doi\":\"10.1109/SAM.2014.6882377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is concerned with direction-of-arrival (DOA) estimation of narrowband signals from multiple targets using a planar antenna array. We illustrate the shortcomings of Maximum Likelihood (ML), Maximum a Posteriori (MAP), and Minimum Mean Squared Error (MMSE) estimation, issues that can be attributed to the symmetry in the likelihood function that must exist when there is no information about labeling of targets. We proffer the recently introduced concept of Minimum Mean OSPA (MMOSPA) estimation that is based on the optimal sub-pattern assignment (OSPA) metric for sets and hence inherently incorporates symmetric likelihood functions.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了基于平面天线阵的多目标窄带信号的到达方向估计问题。我们说明了最大似然(ML)、最大后验(MAP)和最小均方误差(MMSE)估计的缺点,这些问题可归因于在没有关于目标标记的信息时必然存在的似然函数的对称性。我们提出了最近引入的最小均值OSPA (MMOSPA)估计概念,该概念基于集合的最优子模式分配(OSPA)度量,因此固有地包含对称似然函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MMOSPA-based direction-of-arrival estimation for planar antenna arrays
This work is concerned with direction-of-arrival (DOA) estimation of narrowband signals from multiple targets using a planar antenna array. We illustrate the shortcomings of Maximum Likelihood (ML), Maximum a Posteriori (MAP), and Minimum Mean Squared Error (MMSE) estimation, issues that can be attributed to the symmetry in the likelihood function that must exist when there is no information about labeling of targets. We proffer the recently introduced concept of Minimum Mean OSPA (MMOSPA) estimation that is based on the optimal sub-pattern assignment (OSPA) metric for sets and hence inherently incorporates symmetric likelihood functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信