Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, Zhi Wang
{"title":"通过细粒度无服务器管道实现云边缘协作在线视频分析","authors":"Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, Zhi Wang","doi":"10.1145/3458305.3463377","DOIUrl":null,"url":null,"abstract":"The ever-growing deployment scale of surveillance cameras and the users' increasing appetite for real-time queries have urged online video analytics. Synergizing the virtually unlimited cloud resources with agile edge processing would deliver an ideal online video analytics system; yet, given the complex interaction and dependency within and across video query pipelines, it is easier said than done. This paper starts with a measurement study to acquire a deep understanding of video query pipelines on real-world camera streams. We identify the potentials and practical challenges towards cloud-edge collaborative video analytics. We then argue that the newly emerged serverless computing paradigm is the key to achieve fine-grained resource partitioning with minimum dependency. We accordingly propose CEVAS, a Cloud-Edge collaborative Video Analytics system empowered by fine-grained Serverless pipelines. It builds flexible serverless-based infrastructures to facilitate fine-grained and adaptive partitioning of cloud-edge workloads for multiple concurrent query pipelines. With the optimized design of individual modules and their integration, CEVAS achieves real-time responses to highly dynamic input workloads. We have developed a prototype of CEVAS over Amazon Web Services (AWS) and conducted extensive experiments with real-world video streams and queries. The results show that by judiciously coordinating the fine-grained serverless resources in the cloud and at the edge, CEVAS reduces 86.9% cloud expenditure and 74.4% data transfer overhead of a pure cloud scheme and improves the analysis throughput of a pure edge scheme by up to 20.6%. Thanks to the fine-grained video content-aware forecasting, CEVAS is also more adaptive than the state-of-the-art cloud-edge collaborative scheme.","PeriodicalId":138399,"journal":{"name":"Proceedings of the 12th ACM Multimedia Systems Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Towards cloud-edge collaborative online video analytics with fine-grained serverless pipelines\",\"authors\":\"Miao Zhang, Fangxin Wang, Yifei Zhu, Jiangchuan Liu, Zhi Wang\",\"doi\":\"10.1145/3458305.3463377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-growing deployment scale of surveillance cameras and the users' increasing appetite for real-time queries have urged online video analytics. Synergizing the virtually unlimited cloud resources with agile edge processing would deliver an ideal online video analytics system; yet, given the complex interaction and dependency within and across video query pipelines, it is easier said than done. This paper starts with a measurement study to acquire a deep understanding of video query pipelines on real-world camera streams. We identify the potentials and practical challenges towards cloud-edge collaborative video analytics. We then argue that the newly emerged serverless computing paradigm is the key to achieve fine-grained resource partitioning with minimum dependency. We accordingly propose CEVAS, a Cloud-Edge collaborative Video Analytics system empowered by fine-grained Serverless pipelines. It builds flexible serverless-based infrastructures to facilitate fine-grained and adaptive partitioning of cloud-edge workloads for multiple concurrent query pipelines. With the optimized design of individual modules and their integration, CEVAS achieves real-time responses to highly dynamic input workloads. We have developed a prototype of CEVAS over Amazon Web Services (AWS) and conducted extensive experiments with real-world video streams and queries. The results show that by judiciously coordinating the fine-grained serverless resources in the cloud and at the edge, CEVAS reduces 86.9% cloud expenditure and 74.4% data transfer overhead of a pure cloud scheme and improves the analysis throughput of a pure edge scheme by up to 20.6%. Thanks to the fine-grained video content-aware forecasting, CEVAS is also more adaptive than the state-of-the-art cloud-edge collaborative scheme.\",\"PeriodicalId\":138399,\"journal\":{\"name\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458305.3463377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458305.3463377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards cloud-edge collaborative online video analytics with fine-grained serverless pipelines
The ever-growing deployment scale of surveillance cameras and the users' increasing appetite for real-time queries have urged online video analytics. Synergizing the virtually unlimited cloud resources with agile edge processing would deliver an ideal online video analytics system; yet, given the complex interaction and dependency within and across video query pipelines, it is easier said than done. This paper starts with a measurement study to acquire a deep understanding of video query pipelines on real-world camera streams. We identify the potentials and practical challenges towards cloud-edge collaborative video analytics. We then argue that the newly emerged serverless computing paradigm is the key to achieve fine-grained resource partitioning with minimum dependency. We accordingly propose CEVAS, a Cloud-Edge collaborative Video Analytics system empowered by fine-grained Serverless pipelines. It builds flexible serverless-based infrastructures to facilitate fine-grained and adaptive partitioning of cloud-edge workloads for multiple concurrent query pipelines. With the optimized design of individual modules and their integration, CEVAS achieves real-time responses to highly dynamic input workloads. We have developed a prototype of CEVAS over Amazon Web Services (AWS) and conducted extensive experiments with real-world video streams and queries. The results show that by judiciously coordinating the fine-grained serverless resources in the cloud and at the edge, CEVAS reduces 86.9% cloud expenditure and 74.4% data transfer overhead of a pure cloud scheme and improves the analysis throughput of a pure edge scheme by up to 20.6%. Thanks to the fine-grained video content-aware forecasting, CEVAS is also more adaptive than the state-of-the-art cloud-edge collaborative scheme.