场效应管模型的能量和电荷守恒

C. Wilson, M. Schmidt-Szalowski, J. King
{"title":"场效应管模型的能量和电荷守恒","authors":"C. Wilson, M. Schmidt-Szalowski, J. King","doi":"10.1109/EuMIC48047.2021.00055","DOIUrl":null,"url":null,"abstract":"This paper introduces a simple and accurate approach to extracting an energy and charge conservative model for the displacement current in a field-effect transistor (FET). Through careful fitting of the device transconductance time-delay parameter, a symmetric capacitance matrix is obtained that may be used directly to extract a single energy function in the form of an artificial neural network (ANN). Results show excellent capacitance fits across the full bias plane along with high-fidelity S-parameter fits at multiple bias points.","PeriodicalId":371692,"journal":{"name":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Energy and Charge Conservation for FET Models\",\"authors\":\"C. Wilson, M. Schmidt-Szalowski, J. King\",\"doi\":\"10.1109/EuMIC48047.2021.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a simple and accurate approach to extracting an energy and charge conservative model for the displacement current in a field-effect transistor (FET). Through careful fitting of the device transconductance time-delay parameter, a symmetric capacitance matrix is obtained that may be used directly to extract a single energy function in the form of an artificial neural network (ANN). Results show excellent capacitance fits across the full bias plane along with high-fidelity S-parameter fits at multiple bias points.\",\"PeriodicalId\":371692,\"journal\":{\"name\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 15th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuMIC48047.2021.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuMIC48047.2021.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种提取场效应晶体管(FET)位移电流能量和电荷守恒模型的简单而准确的方法。通过仔细拟合器件的跨导时延参数,得到一个对称电容矩阵,该矩阵可直接用于提取单个能量函数的人工神经网络(ANN)形式。结果表明,在整个偏置平面上具有良好的电容拟合性能,并且在多个偏置点具有高保真的s参数拟合性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and Charge Conservation for FET Models
This paper introduces a simple and accurate approach to extracting an energy and charge conservative model for the displacement current in a field-effect transistor (FET). Through careful fitting of the device transconductance time-delay parameter, a symmetric capacitance matrix is obtained that may be used directly to extract a single energy function in the form of an artificial neural network (ANN). Results show excellent capacitance fits across the full bias plane along with high-fidelity S-parameter fits at multiple bias points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信