基于经验与机制相结合模型的PEMFC预测控制

Jun Lu, A. Zahedi
{"title":"基于经验与机制相结合模型的PEMFC预测控制","authors":"Jun Lu, A. Zahedi","doi":"10.1109/POWERCON.2012.6401251","DOIUrl":null,"url":null,"abstract":"The modelling and control of proton exchange membrane fuel cell (PEMFC) possesses great challenges due to PEMFC system's inherent nonlinearities, time-varying characteristics and tight operating constraints. In this paper, we propose a constrained model predictive control (MPC) strategy based on a combined empirical and mechanistic model of PEMFC. First, we propose a hybrid modelling approach based on the combination of prior knowledge, under the form of mechanistic submodel, with empirical submodel devoted to the extraction of knowledge from operating data. The empirical submodel is a SVM model, which predicts the voltage at different stack currents and temperatures under the reference hydrogen and oxygen partial pressure. The mechanistic submodel calculates the correction voltage by taking account of hydrogen and oxygen partial pressure changes. Particle swarm optimization (PSO) algorithm and penalty function are then employed to solve the resulting nonlinear constrained predictive control problem. Simulation results demonstrate that the proposed method can deal with the constraints and achieve satisfactory performance.","PeriodicalId":176214,"journal":{"name":"2012 IEEE International Conference on Power System Technology (POWERCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predictive control of PEMFC based on a combined empirical and mechanistic model\",\"authors\":\"Jun Lu, A. Zahedi\",\"doi\":\"10.1109/POWERCON.2012.6401251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modelling and control of proton exchange membrane fuel cell (PEMFC) possesses great challenges due to PEMFC system's inherent nonlinearities, time-varying characteristics and tight operating constraints. In this paper, we propose a constrained model predictive control (MPC) strategy based on a combined empirical and mechanistic model of PEMFC. First, we propose a hybrid modelling approach based on the combination of prior knowledge, under the form of mechanistic submodel, with empirical submodel devoted to the extraction of knowledge from operating data. The empirical submodel is a SVM model, which predicts the voltage at different stack currents and temperatures under the reference hydrogen and oxygen partial pressure. The mechanistic submodel calculates the correction voltage by taking account of hydrogen and oxygen partial pressure changes. Particle swarm optimization (PSO) algorithm and penalty function are then employed to solve the resulting nonlinear constrained predictive control problem. Simulation results demonstrate that the proposed method can deal with the constraints and achieve satisfactory performance.\",\"PeriodicalId\":176214,\"journal\":{\"name\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Power System Technology (POWERCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERCON.2012.6401251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Power System Technology (POWERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERCON.2012.6401251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

质子交换膜燃料电池(PEMFC)系统固有的非线性、时变特性和严格的运行约束给其建模和控制带来了很大的挑战。本文提出了一种基于约束模型预测控制(MPC)的约束模型预测控制策略。首先,我们提出了一种基于先验知识的混合建模方法,以机械子模型的形式与经验子模型相结合,致力于从运营数据中提取知识。经验子模型为支持向量机模型,在参考氢、氧分压下预测不同堆叠电流和温度下的电压。机械性子模型通过考虑氢、氧分压的变化来计算校正电压。然后利用粒子群优化算法和惩罚函数求解非线性约束预测控制问题。仿真结果表明,该方法能够有效地处理约束条件,并取得了满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive control of PEMFC based on a combined empirical and mechanistic model
The modelling and control of proton exchange membrane fuel cell (PEMFC) possesses great challenges due to PEMFC system's inherent nonlinearities, time-varying characteristics and tight operating constraints. In this paper, we propose a constrained model predictive control (MPC) strategy based on a combined empirical and mechanistic model of PEMFC. First, we propose a hybrid modelling approach based on the combination of prior knowledge, under the form of mechanistic submodel, with empirical submodel devoted to the extraction of knowledge from operating data. The empirical submodel is a SVM model, which predicts the voltage at different stack currents and temperatures under the reference hydrogen and oxygen partial pressure. The mechanistic submodel calculates the correction voltage by taking account of hydrogen and oxygen partial pressure changes. Particle swarm optimization (PSO) algorithm and penalty function are then employed to solve the resulting nonlinear constrained predictive control problem. Simulation results demonstrate that the proposed method can deal with the constraints and achieve satisfactory performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信